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Abstract 

■ Objects are grouped into categories through a complex 
combination of statistical and structural regularities. We sought 
to better understand the neural responses to the structural 
features of object categories that result from implicit learning. 
Adult participants were exposed to 32 object categories that 
contained three structural properties: frequency, variability, 
and co-occurrences, during an implicit learning task. After this 
exposure, participants completed a recognition task and were 
then presented with blocks of learned object categories during 
fMRI sessions. Analyses were performed by extracting data from 
ROIs placed throughout the fusiform gyri and lateral occipital 
cortex and comparing the effects of the different structural prop-
erties throughout the ROIs. Behaviorally, we found that symbol 

category recognition was supported by frequency, but not vari-
ability. Neurally, we found that sensitivity to object categories 
was greater in the right hemisphere and increased as ROIs were 
moved posteriorly. Frequency and variability altered the brain 
activation while processing object categories, although the pres-
ence of learned co-occurrences did not. Moreover, variability 
and co-occurrence interacted as a function of ROI, with the 
posterior fusiform gyrus being most sensitive to this relation-
ship. This result suggests that variability may guide the learner 
to relevant co-occurrences and this is supported by the posterior 
ventral temporal cortex. Broadly, our results suggest that the 
internal features of the categories themselves are key factors 
in the category learning system. ■ 

INTRODUCTION 

As we encounter objects in our environment, we implic-
itly group them into categories. The ability to form cate-
gories of objects that are similar in a given dimension or 
dimensions organizes and simplifies our knowledge. 
Categorization also allows us to understand new objects 
by associating them with known objects. However, un-
derstanding how we initially form categories of objects, 
how category boundaries are defined, and the dynamic 
nature of categories remains elusive. Understanding cat-
egory formation is further complicated by varying theo-
ries regarding the subcomponents that underlie the 
structure of the categories themselves. 
Perhaps the simplest way to consider category learning 

is the situation where we learn the name of a new object 
based on its visual appearance. In doing so, we extract 
information from new events that has commonalities 
and differences with previous events. For example, visual 
statistical learning allows for the linking of co-occurrences 
such as an object and its name. Research has demon-
strated that both infants and adults have powerful statis-
tical tracking mechanisms that allow them to overcome 
ambiguity in an environment and link word–object pairs 
based on these probabilistic regularities (Smith & Yu, 
2008; Yu & Smith, 2007). 
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Much of our focus in studying category learning is on 
the capabilities of the learner. For example, the learner 
acquires some categories by producing them by hand 
(Vinci-Booher & James, 2020; Vinci-Booher, Cheng, & 
James, 2019; James, 2017; James & Engelhardt, 2012) 
or by physically exploring the category (Slone, Smith, & 
Yu, 2019; James, Jones, Swain, Pereira, & Smith, 2014; 
James & Swain, 2011; James, 2010). Nonetheless, the 
learner is only one piece of the puzzle in this system. 
Just as the learner has limitations and competencies that 
interact with the environment to support learning, object 
categories themselves also have properties that are 
worthwhile to study. There is some evidence that the sta-
tistical, internal properties of categories themselves influ-
ence learning. For example, category structures such a 
density and sparsity are known to affect the ease of acqui-
sition of categories, with dense categories (i.e., those 
with many predictive features such as cats and dogs) 
being developmentally easier to acquire than sparse cat-
egories (i.e., those with more deterministic boundaries 
that have specific and necessary prerequisites like the 
concept “electron”; Sloutsky, 2010; Kloos & Sloutsky, 
2008). If category structure has an effect on learning mea-
sured with overt behavioral responses, then neural sys-
tems must also show a sensitivity to category structure. 

A significant amount of neuroimaging research has 
been devoted to understanding how categories of objects 
are processed in the brain (for a review, see Grill-Spector 
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& Weiner, 2014). This body of research has focused on 
visual processing in the ventral temporal cortex (VTC), a 
broad neural system that has been shown to process 
object properties in a nested, hierarchical manner (Grill-
Spector & Weiner, 2014). This research, however, has 
focused predominately in the object properties them-
selves (shape, color, size; e.g., Vinberg & Grill-Spector, 
2008), as well as the “level” of categorization that is 
required of a given task (individual level, subordinate or 
superordinate; e.g., Grill-Spector, Knouf, & Kanwisher, 
2004). In contrast, how the structure of the category itself 
affects processing in the VTC is still an open question. That 
is, the exemplars in a given category have a relationship to 
one another in the context of the category. When a cate-
gory is learned, there may be exemplars that occur more 
frequently during learning events, but it is not known 
whether the VTC is sensitive to how frequently an exem-
plar occurs within a category. Furthermore, a category may 
be composed of exemplars that vary in terms of their 
similarity to one another: Some categories contain highly 
variable exemplars, whereas other categories may contain 
exemplars that are visually very similar, even within the 
same level of categorization (as defined by Rosch, Mervis, 
Gray, Johnson, & Boyes-Braem, 1976). In addition, objects 
rarely occur in isolation (except in experimental setups), and 
the visual system is sensitive to co-occurrences of objects 
both spatially and temporally (e.g., Turk-Browne, Scholl, 
Chun, & Johnson, 2009). Thus, structural properties of 
categories may affect overt learning and recruit different 
levels of processing in the visual system. Below, we review 
these three structural features of categories—frequency, 
variability, and co-occurrence—that past research has 
suggested play roles in learning. We then discuss an 
experiment that investigates the neural basis for these 
structural features after learning novel object categories. 

Object Frequency 

One potentially important structural feature of object cat-
egories is the frequency by which individuals encounter 
category exemplars in their environment. Recent evidence 
from the home environments of infants revealed that a 
small number of objects were extremely frequent, demon-
strating that the distribution of visual objects in the real 
world may be highly skewed (Clerkin, Hart, Rehg, Yu, & 
Smith, 2017). Interestingly, the highly frequent objects 
were the normatively acquired, first learned words 
(Smith, Jayaraman, Clerkin, & Yu, 2018; Clerkin et al., 
2017). In behavioral categorization tasks, classification 
accuracy has been found to be higher for high-frequency 
exemplars (Nosofsky, 1988). Furthermore, past research 
has speculated that frequency is largely related to object 
typicality (Rosch & Mervis, 1975). 

Recent evidence examining typicality effects in the 
brain have revealed a role of object-selective brain regions 
in processing typical and atypical exemplars. Specifically, 
Iordan, Greene, Beck, and Fei-Fei (2016) used brain 

imaging techniques to better understand neural represen-
tation of natural categories such “fish” and “dogs” that 
contained exemplars that varied across typicality judg-
ments. Although Iordan et al. (2016) did not explicitly 
test exemplar frequency, typicality may be a proxy for fre-
quency as the two constructs have a mutual relationship 
where they alter our perception of category exemplars 
(Nosofsky, 1988). Through multivoxel pattern analysis, 
Iordan et al. found that atypical exemplars (e.g., a puffer-
fish) produced activation patterns that were different from 
the central tendencies of other, more common category 
members (e.g., a clownfish) through the lateral occipital 
complex (LOC). Furthermore, this pattern was not present 
in early visual areas suggesting that this effect was not 
driven by lower-level, perceptual features. Thus, the brain 
may process statistical information such as exemplar 
frequency (although frequency has not been directly 
tested) and typicality and this may be driven by the LOC. 

Object Variability 

The variability or distribution of exemplars within an object 
category has also been noted as having impacts on learning. 
For example, exposure to variable symbol forms such as 
handwritten symbols results in greater categorization ability 
compared to exposure to highly similar visual outputs such 
as typed or traced symbols (Li & James, 2016). Similarly, 
adults demonstrate faster object recognition if they were 
exposed to an object from multiple, randomly sampled 
viewpoints (high visual variability) as opposed to objects 
that were observed from spatially continuous viewpoints 
(low visual variability; Harman & Humphrey, 1999). The 
underlying hypothesis is that variability may allow individ-
uals to extrapolate the central features that allow them to 
form generalizable biases to support future learning 
(Perry, Samuelson, Malloy, & Schiffer, 2010). 
Recent evidence examining the neural mechanisms of 

both letter perception and category learning have also 
identified brain regions associated with variability. 
Specifically, Vinci-Booher and James (2020) found that 
young children who are still learning letters demonstrated 
greater activation in the left middle fusiform gyrus 
(FFG) for handwritten forms compared to typed letters. 
However, older children and adults who were literate 
did not show this effect. Vinci-Booher and James (2020) 
interpreted this finding as variability contributing to initial 
category formation. Thus, older children and adults did 
not show this effect because they already had expert 
knowledge of letter categories. Recent evidence examin-
ing novel category learning in older children and adults 
have identified similar findings. Specifically, Plebanek 
and James (2021) found that 8-year-olds and adults 
demonstrated greater activity associated  with the  right  
posterior fusiform gyrus when learning variable com-
pared to tight categories. Furthermore, these researchers 
also found that variability led to activity associated with 
the fusiform gyri driven by an invariant feature that 
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defined the category, whereas tightly organized categories 
led to responses based on overall similarity (but without a 
consistent feature). Thus, the brain appears to respond to 
variability among category members and the fusiform 
gyrus, in particular, is highly involved in this process. 
It is worth noting, however, that variability may not be 

entirely beneficial for learning. Work examining chicks’ 
development of object invariance have suggested that 
small, tightly confined viewpoint changes in an object 
may be sufficient to support invariance development 
( Wood, 2016). Similarly, infants’ object recognition 
appears to be improved when objectmovement is restricted  
so that they are observed from a fewer number of view-
points (Kraebel & Gerhardstein, 2006). Thus, although there 
are both behavioral and brain-based effects from varying 
object category exemplars, whether or not variability is 
beneficial to learning remains controversial. 

Objects and Co-occurrences 

At the broadest level, categories, objects, and other infor-
mation present in the world is full of probabilistic regular-
ities that the learner can use to predict future events. The 
brain is capable of extracting these regularities from a 
young age (Saffran, Aslin, & Newport, 1996). In fact, the 
brain is so attuned to these regularities that there is activa-
tion throughout category-relevant visual areas in the ven-
tral temporal cortex even though individuals do not 
explicitly recall the regularities (Turk-Browne et al., 
2009). These processes may be important in formulating 
links among features, dimensions spanning values of 
features, or objects that co-occur across space and time. 
These co-occurrences may then be the building blocks 
of representations as measured by neural instantiations 
of object knowledge (see Sherman, Graves, & Turk-
Browne, 2020, for a review). The neural representations 
of objects appear to be driven, in part, by incidental 
co-occurrences across time and space. For example, 
Schapiro, Kustner, and Turk-Browne (2012) discovered 
the patterns of neural representations throughout the me-
dial temporal lobe for novel objects were more similar 
when the objects occurred together in time. Similar mech-
anisms may underlie object recognition more broadly. For 
example, objects are organized by temporal structure that 
links multiple features of objects across different views to 
create composite object representations (see Wallis & 
Bülthoff, 1999, for a review). This co-occurrence structure 
is commonly associated with the VTC and may explain how 
features play a role in object recognition ( Wallis & 
Bülthoff, 1999). More specific mapping of spatial 
co-occurrence sensitivity in the VTC has shown that the 
anterior fusiform gyrus responds to co-occurrence more 
than posterior VTC structures (Stansbury, Naselaris, & 
Gallant, 2013). Therefore, recent neuroimaging work has 
pointed to the VTC and specifically the anterior fusiform 
gyrus for possible neural mechanisms that are sensitive 
and/or support co-occurrences within a category. 

This Study 

Taken together, these studies shed light on the way the 
brain processes regularities as we learn objects. Within a 
single object category, these regularities take many forms. 
First, at the level of the category, how frequent or typical 
an exemplar is in the overall scheme of the category may 
influence how it is processed. Second, the variability and 
diversity of category members and features can also influ-
ence how a category is learned and generalized. Third, 
features may co-occur and predict other features and 
category membership. All of these regularities matter 
and may guide the learner to a specific representation or 
category judgment. Also of note is the regularity by which 
we see subregions of the ventral temporal cortex respond 
to these three (frequency, variability, and co-occurrences) 
structural elements separately, but how the structural ele-
ments interact is unknown (Plebanek & James, 2021; 
Iordan et al., 2016; Stansbury et al., 2013; Turk-Browne 
et al., 2009). 

Taken together, research supports the idea that different 
structures within the VTC support different aspects of cate-
gory structure: frequency by the LOC (Iordan et al., 2016), 
variability by the middle fusiform gyrus (Vinci-Booher & 
James, 2020), and co-occurrence by the anterior fusiform 
gyrus (Stansbury et al., 2013). None of the past work, 
however, compared these properties directly within each 
of these ROIs. The present work sought to address this 
gap in the literature. 

Therefore, we were interested in two main questions: 
(1) How does the brain process three different structural 
properties that are relevant for learning new object cate-
gories: frequency, variability, and co-occurrences among 
features? (2) Are these structural properties differentiated 
from one another as reflected by differences in neural 
responses in specified ROIs? 

To answer these questions, we created a metrically 
organized set of novel categories that allowed us control 
these three structural elements. Participants were exposed 
to the object categories over two days and then underwent 
two MRI sessions that measured the brain responses to 
the object categories. Given that frequency, variability, 
and co-occurrence all affect object learning and have 
been shown individually to recruit different regions 
within the VTC, we expected to see preference in certain 
ROIs for the different types of structure, but not exclu-
sivity in relative responses. 

METHODS 

Participants 

Seventeen literate English-speaking adults (M = 23.9 years, 
range = 3.3 years, 7 men) completed this study. Participants 
were graduate and undergraduate students from a small, 
Midwestern town and were recruited through word of 
mouth. All participants were right-handed and were 
screened for neurological trauma, developmental 
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disorders, and magnetic resonance (MR) contraindica-
tions. Three additional participants were excluded for 
the following reasons: One did not complete the study, 
and two were excluded for excessive motion. All partici-
pants provided informed consent in accordance with the 
Indiana University institutional review board. Participants 
received $10 for each behavioral session and $25 for each 
MRI session. For completing all sessions, they received a 
$20 bonus, resulting in a total of $90. 

Materials 

A set of 90 novel object categories defined by shape were 
created for this study (see Figure 1 for examples). The 
objects were multistroke two-dimensional letter-like 
symbols that were similar to sets previously used in 
novel-object learning experiments (e.g., James & Atwood, 
2009). This set was used for ease of manipulation of cate-
gory structure while still maintaining the complexity of 
naturally occurring categories such as symbols and letters 
(see Figure 1). They were constructed with a computer 
drawing program and were composed of strokes that 
occur in written letters. Thirty-two of these object catego-
ries were present during training. The remaining 58 object 
categories were reserved for new categories during the 
MRI sessions or the recognition test. Object categories 
were composed of symbols that varied in size and color 
(see Figure 1), which are labeled here as object features. 
Both size and color varied metrically across 12 steps 
(Figure 2).  The smallest size value  was 50 × 50  pixels,  
and each step increased size by 25 pixels, with the largest 
value (Value 12) being approximately 325 × 325. The first 
color value in red, green, blue coordinates was [255 122 
122] and was a pink color. The R value incrementally 
changed by −22 in each metric step until the red, green, 
blue values were [13 122 122] and was a teal color. 

Figure 1. Object category shapes grouped by condition. Groups of 
shapes (rows) were randomly assigned to a condition defined by 
frequency and variability. Symbol assignments to conditions were 
counterbalanced across participants. 

Figure 2. Size and color metric dimensions for variable (left) and tight 
(right) variability structures. The center of the variable dimension 
graphic is size and color value one. The furthest circle is size and color 
Value 12. The center of the tight dimension graphic is size and color 
value four. The furthest circle is size and color seven. 

Furthermore, each object category was organized 
according to three structural properties: frequency of 
identical exemplars, variability among members, and 
co-occurrence between features. Frequency was defined 
as either high or low frequency depending on how many 
times a particular exemplar from the object category was 
presented during training. For high-frequency categories, 
identical exemplars were presented a total of 140 times 
across all training blocks. For low-frequency categories, 
identical exemplars were presented a total of 40 times 
across all training blocks. Variability was defined as the 
distribution of features individuals saw during training 
and the fMRI sessions. For training, tight categories’ fea-
ture values were only four through seven for the color 
and size. For variable categories, feature values were a 
broader distribution [1, 2, 3, 5, 7, 10, 11, 12] of the object 
features. During the MR session, tight and variable catego-
ries were presented with the same distribution as training. 
Finally, co-occurrence reflected the pairing of the values 
of the features during training. During training, each 
feature value was linked so that a person saw the same 
numerical value for both size and color (i.e., if they saw a 
value four for size, it was also a value four for color). During 
the MR session, some of the blocks were unlinked—the 
features of color and size were randomly paired. 

Design 

Object categories were then randomly assigned to a con-
dition based on these structural properties so that each 
condition contained eight different object categories. 
During implicit learning, participants saw four conditions: 
[high, variable, linked], [low, variable, linked], [high, tight, 
linked], [low, tight, linked]. During MRI, participants saw 
these four conditions as well as their unlinked counter-
parts: [high, variable, unlinked], [low, variable, unlinked], 
[high, tight, unlinked], [low, tight, unlinked]. Participants 
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also saw a ninth condition consisting of new items that 
were both variable and linked [new, variable, linked]. 
Finally, during the recognition task presented after 

training, participants saw black symbols for each category 
that were from Size Value 6. This was required so that 
participants would not continue to associate the feature 
co-occurrences after training. This resulted in a design 
with the following factors and levels: frequency (levels: 
high and low), variability (levels: variable and tight), 
co-occurrence (levels: linked and unlinked). These factors 
were combined to create eight conditions in a 2 (frequency: 
high vs. low) × 2 (variability: tight vs. variable) × 2 (co-
occurrence: linked vs. unlinked) repeated-measures 
design. In addition, the [new variable linked] condition 
was used to examine learning and novelty effects. 

Procedure 

The study was completed over 4 days. During the first 
day, participants completed three blocks of an implicit 
training task, reflecting our interest in statistical learning. 
During the second day, participants completed two 
blocks of implicit training and a recognition task. The 
third and fourth days consisted of MRI sessions. All ses-
sions are explained in detail below. 

Implicit Training Sessions 

After providing informed consent, participants were taken 
to a quiet room. They were told that they were going to be 
seeing some novel symbols, two-at-a-time on a computer 
screen. If the participant thought the symbols were the 
same, they were told to press  the number  “1” on the 
keyboard. If they were different, they were told to press 
“0.” Participants were explicitly told that there was no 
correct answer to this task and to simply use their best 
judgment. Therefore, any learning that occurred would 
be a result of this implicit task. Although there is contro-
versy as to whether category learning should be studied 
through explicit or implicit tasks (see Ashby & Valentin, 
2017), we chose to use an implicit task because of our 
interest in statistical learning and from demonstrations 
that category learning often proceeds in this manner 
(e.g., Sherman et al., 2020). 
Symbols were presented so that they were vertically cen-

tered with one symbol on the left side of the screen and one 
symbol on the right side of the screen (see Figure 3). Once 

the symbols appeared, participants were required to wait to 
make their judgment for 750 msec until the computer 
prompted them for their answer. The symbols and the 
prompt remained on the screen until participants re-
sponded. Combinations of symbols were organized so that 
pairs matched on object category (shape) on only 28 trials 
per block (9.72% of trials). Similarly, features (color and 
size) matched across both objects on 28 trials per block. 
Therefore, the majority of trials presented unassociated 
exemplars. Co-occurrences of size and color were always 
linked in this task. During Day 1, participants completed 
three blocks. During Day 2, participants completed two 
blocks. 

Recognition Test 

After completing the learning session on Day 2, participants 
immediately began the recognition test. Participants were 
told that they would see a briefly presented symbol in the 
center of the screen followed by a static Gaussian noise 
mask. They were required to press the numeral “1” button 
on a keyboard if they had seen the symbol during the 
training sessions, and press “0” if they had not. Each symbol 
was presented for 150 msec; the mask was presented for 
100 msec, followed by a response prompt. There was no 
time limit to respond. Response time and sensitivity (hits − 
false alarms) were measured. 

MRI Sessions 

Participants completed two consecutive days of imaging 
sessions each lasting 45–60 min. The structure of the two 
days was the same with the exception that, on their first 
day, a high-resolution anatomical scan was completed prior 
to the functional runs. On each day, participants completed 
eight functional runs (16 total). The order of these func-
tional runs was randomized across the 2 days. 

Each functional run consisted of nine blocks each lasting 
20 sec. Blocks contained 20 exemplars of a symbol category, 
with each symbol appearing on screen for 800 msec 
followed by a 200-msec fixation cross. Thus, each block 
consisted of only one object category (see Figure 4). 
There was a 10-sec interblock interval that was not 
analyzed. There was also a 10-sec rest period at the begin-
ning and end of each run. Thus, runs lasted approximately 
4 min 40 sec. The order of blocks within each run was 
randomized. 
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Figure 4. Schematic of the 
fMRI paradigm. Participants saw 
a single object category per 
block. Each block consisted 
of 20 presentations of object 
category exemplars for 
800 msec. Each exemplar 
was separated by a 200-msec 
fixation cross. Each block in 
a run consisted of different 
combinations of structural 
features. 

Learned categories were repeated across the experi-
ment in four blocks. Two blocks contained linked features 
whereas two blocks presented unlinked features. New 
object categories appeared in a total of two blocks only 
and were always linked. Within each individual run, each 
training condition appeared once. Each condition was a 
separate block with a different object category in each 
block. 

Scanning Parameters 

Neuroimaging was conducted using a Siemens Magnetom 
Tim Trio 3-T whole-body MRI system located in the Indiana 
University Imaging Research Facility at the Department of 
Psychological and Brain Sciences. The high-resolution 
T1-weighted anatomical scans were conducted using a 
magnetization prepared rapid gradient echo sequence: 
inversion time = 900 msec, echo time = 2.98 msec, rep-
etition time = 2300 msec, flip angle = 9°, with 176 sagittal 
slices of 1.0-mm thickness, a field of view 256 × 248 mm, 
and an isometric voxel of 1.0 mm3. For functional images, 
the field of view was 220 × 220 mm, with an in-plane res-
olution of 110 × 110 pixels and 72 axial slices of 2.0-mm 
thickness per volume with 0% slice gap, producing an 
isometric voxel size of 2.0 mm3. Functional images were 
acquired using a gradient echo EPI sequence with inter-
leaved slice order: echo time = 30 msec, repetition time = 
2000 msec, flip angle = 52° for BOLD imaging. 

Analyses 

The main analyses consisted of standard preprocessing 
pipeline for fMRI data. Analyses and preprocessing were 
conducted using BrainVoyager v20.6 (Brain Innovation). 

Preprocessing and Motion Correction 

Each individual’s anatomical volumes were standardized to 
Talairach space (Talairach & Tournoux, 1988). Preprocessing 
of function volumes included slice-time correction, 3-D 

motion correction using trilinear, sinc-interpolation, and 
3-D Gaussian spatial smoothing at an FWHM of 6 mm. 
Temporal high-pass filtering was also used with a voxel-
wise general linear model (GLM) that included a Fourier 
basis with a cutoff of two sine/cosine pairs and a linear 
trend predictor. A rigid body transformation was used to 
coregister anatomical and functional volumes. To account 
for head motion, rigid body transformation parameters 
were added to the study design matrix as predictors of 
no interest (Bullmore et al., 1999). As previously men-
tioned, two participants were excluded because of their 
motion: one for having multiple runs with motion spikes 
greater than 2 mm and one for drifting more than 3 mm 
for multiple runs. 

Data Analyses 

Participants completed 16 functional runs. Fourteen of 
these runs were randomly selected for ROIs analyses. 
The remaining two runs were selected for a whole-brain 
contrast that served to localize the ROIs (thus avoiding 
“double-dipping” from the data). Thus, the data were 
analyzed using a random-effects GLM using BrainVoyager’s 
multisubject GLM module. This whole-brain analysis 
served to demarcate broad regions that responded more 
to objects compared with fixation (see Figure 5, Table 1). 
The resultant regions were then subdivided anatomically 
into ROIs for further analyses (Figure 6). 
Individual brains were first normalized to the stereotaxic 

space of Talairach and Tournoux (1988). After the whole-
brain contrast was performed, we divided the resultant 
regions anatomically for subsequent ROI analyses. Three 
of these regions corresponded to subdivisions of the fusi-
form gyrus, one corresponded to the LOC, and one served 
as a control region in primary visual cortex. To subdivide the 
fusiform gyri, we used similar procedures to James and 
Engelhardt (2012). On the x dimension, 10 mm was used 
because this is the average distance from the lateral occip-
ital sulcus and the collateral sulcus. The fusiform gyrus is 
respectively bounded laterally and medially by these 
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Figure 5. Results from a whole-brain contrast comparing learned object 
categories and interblock fixation, p < .001, cluster corrected for six 
contiguous voxels. 

structures. Within the z dimension, we placed ROIs on the 
ventral temporal surface that extended 10 mm dorsally. On 
the y dimension, we followed the collateral sulcus 
posteriorly, splitting the region in three equal portions. 
The resulting ROIs were 10 × 10 × 10 mm3. For the lateral 
occipital region, dimensions were kept as 10 × 10 × 
10 mm3 to maintain consistency across ROIs. On the z 
dimension, the ROI was placed on the ventral occipital sur-
face and extended 10 mm dorsally. On the y dimension, the 
ROI place to was posterior to the previous ROIs. This ROI 
was bounded to the lateral occipital sulcus. As with the fusi-
form ROIs, this area largely corresponded to the most poste-
rior region of the brain that responded more to learned 
symbols than fixation. The primary visual cortex was localized 
in each individual by first locating the broad region that 
responded more to fixation than learned symbols. Then, 
we anatomically localized the calcarine sulcus, with the 
anterior boundary of the ROI specified by the cuneal 
point, and then the 10-mm3 voxel was placed posterior to 
this within the calcarine folds (Hinds et al., 2008). Given 
the large variability in functional localization of area V1, we 
assumed that this large anatomically placed ROI would cap-
ture most of primary visual cortex and potentially 
visual association areas that surround it. Because of its 
role as a control area, individual retinotopic mapping was 
not performed. This procedure was carried out for each 
individual. Details regarding each individual’s ROIs  are  
present in Table 2. 

Table 1. Region of Interest Localizer Analysis 

Figure 6. Schematic of ROI placement (performed individually, this 
depicts average placement). Blue: anterior fusiform; green: middle 
fusiform; pink: posterior fusiform; gray: LOC; red: primary visual cortex. 

Data were extracted from the primary visual cortex and 
compared across conditions, but was not used in the 
overall data analyses for the remaining ROIs given that 
it was simply used as a control region to determine sen-
sitivity to category structure within a region that would 
not be predicted to have such sensitivity. We then ex-
tracted each individual’s data from three ROIs within 
the left and right fusiform gyri and one ROI within the 
left and right LOC (eight ROIs in total). Average activation 
across the time course (excluding first and last three time 
points) from these data was used as the dependent measure 
in a 2 (Frequency: high vs. low) × 2 (Variability: tight vs. 
variable) × 2 (Co-occurrence: linked vs. unlinked) × 4 
(Region: anterior FFG vs. mid FFG vs. posterior FFG vs. 
LOC) × 2 (Hemisphere: left vs. right) ANOVA was per-
formed on the resultant data. Follow-up analyses on simple 
effects and a priori t tests were also conducted. 

RESULTS 

Categorization Performance 

Proportions of “same” responses in the learning sessions 
was calculated for the three conditions: same object shape, 
same features, and no match items (Figure 7). These data 
were submitted to a one-way ANOVA. There was a signifi-
cant effect of Trial type, F(2, 32) = 650.41, p < .001, η2 = 
.946. Follow-up comparisons revealed that participants 
were more likely to categorize objects together when the 
object shape matched than when color and size matched, 
t(16) = 21.84, p < .001, d = 5.40, or when there was no 
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Talairach Coordinates 
Cluster Size 

Contrast (Voxels) Peak x Peak y Peak z Peak t Anatomical Location 

Learned > Fixation 21586 −42 −64 −20 12.70 Left ventral temporal 

21147 39 −70 −20 12.70 Right ventral temporal cortex 

Fixation > Learned 1477 12 94 1 10.34 Bilateral lingual gyrus 

This table presents cluster sizes, peak coordinates, and peak t values for regions that were significant with our localizer contrast. 
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Table 2. Region of Interest Coordinates Table 2. (continued ) 

Participant Region x-Range y-Range z-Range Participant Region x-Range y-Range z-Range 

TK LaFFG −44…−35 −41…−32 −21…−12 RLOC 34…43 −81…−73 −15…−6 

LmFFG −45…−36 −53…−44 −21…−12 DL LaFFG −47…−38 −37…−28 −26…−17 

LpFFG −42…−33 −65…−56 −21…−12 LmFFG −44…−35 −51…−42 −26…−17 

LLOC −32….23 −92…−84 −21…−12 LpFFG −44…−35 −51…−42 −26…−17 

RaFFG 34…43 −45…−36 −21…−12 LLOC −36…−26 −85…−76 −26…−17 

RmFFG 34…43 −58…−49 −21…−12 RaFFG 36…45 −39…−30 −27…−18 

RpFFG 32…41 −69…−60 −21…−12 RmFFG 36…45 −53…−44 −27…−18 

RLOC 25…34 −88…−79 −21…−12 RpFFG 36…45 −67…−58 −27…−18 

VR LaFFG −35…−26 −43…−35 −22…−13 RLOC 23…30 −85…−76 −27…−17 

LmFFG −36…−27 −55…−46 −22…−13 AB LaFFG −44…−34 −38…−29 −21…−12 

LpFFG −30…−21 −60…69 −22…−13 LmFFG −41…−32 −51…−42 −21…−12 

LLOC −30…21 −79…−70 −22…−13 LpFFG −40…−31 −65…−56 −21…−12 

RaFFG 37…46 −36…−45 −22…−13 LLOC −34…−25 −83…−74 −23…−14 

RmFFG 41…50 −55…−46 −22…−13 RaFFG 41…50 −26…−17 −23…−14 

RpFFG 38…47 −66…−57 −22…−13 RmFFG 38…47 −40…−31 −23…−14 

RLOC 32…41 −86…−77 −22…13 RpFFG 38…47 −54…−45 −23…−14 

MT LaFFG −38…−29 −43…−34 −21…−12 RLOC 34…43 −82…−73 −23…−14 

LmFFG −36…−27 −54…−46 −21…−12 EM LaFFG −42…−33 −36…−27 −26…−17 

LpFFG −34…−25 −65…−56 −21…−12 LmFFG −45…−36 −47…−38 −26…−17 

LLOC −29…−20 −85…−77 −21…−12 LpFFG −44…−35 −62…−54 −26…−17 

RaFFG 32…41 −44…−35 −24…−15 LLOC −39…−30 −87…−78 −17…−8 

RmFFG 32…41 −56…−47 −24…−15 RaFFG 37…48 −32…−23 −26…−17 

RpFFG 28…37 −69…−60 −24…−15 RmFFG 36…45 −49…−40 −26…−17 

RLOC 19…28 −91…−82 −24…−15 RpFFG 35…44 −63…−54 −26…−17 

EC LaFFG −44…−35 −41…−32 −25…−16 RLOC 30…39 −87…−78 −17…−8 

LmFFG −42…−33 −55…−46 −25…−16 BM LaFFG −42…−33 −38…−29 −26…−17 

LpFFG −41…−32 −65…−56 −25…−16 LmFFG −41…−32 −52…−43 −26…−17 

LLOC −32…−23 −90…−81 −25…−16 LpFFG −40…−31 −70…−61 −26…−17 

RaFFG 37…47 −42…−33 −25…−16 LLOC −31…−22 −87…−78 −26…−17 

RmFFG 38…47 −55…−46 −25…−16 RaFFG 36…45 −37…−28 −26…−17 

RpFFG 37…46 −67…−58 −25…−16 RmFFG 36…45 −42…−50 −26…−17 

RLOC 25…34 −92…−82 −25…−16 RpFFG 34…43 −63…−54 −26…−17 

JF LaFFG −28…−19 −42…−33 −16…−7 RLOC 24…33 −84…−75 −22…−13 

LmFFG −25…−16 −53…−45 −16…−7 PM LaFFG −41…−32 −37…−27 −34…−25 

LpFFG −24…−15 −66…57 −16…−7 LmFFG −41…−32 −50…−41 −34…−25 

LLOC −24…−15 −91…−82 −13…−4 LpFFG −40…−31 −65…−56 −34…−25 

RaFFG 41…40 −36…−27 −15…−6 LLOC −34…−25 −86…−77 −34…−25 

RmFFG 39…48 −49…40 −15…−6 RaFFG 38…47 −34…−25 −29…−20 

RpFFG 38…47 −63…−54 −15…−6 RmFFG 38…47 −46…−36 −29…−20 
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Table 2. (continued ) Table 2. (continued ) 

Participant Region x-Range y-Range z-Range Participant Region x-Range y-Range z-Range 

RpFFG 38…47 −57…−48 −29…−20 RmFFG 35…44 −43…−34 −23…−14 

RLOC 35…44 −80…−71 −29…−20 RpFFG 34…43 −55…−46 −23…−14 

ML LaFFG −37…−28 −41…−32 −26…−17 RLOC 35…43 −80…−71 −19…−10 

LmFFG −36…−27 −55…−47 −26…−17 AM2 LaFFG −38…−29 −43…−34 −21…−12 

LpFFG −35…−26 −68…−59 −26…−17 LmFFG −36…−27 −55…−46 −21…−12 

LLOC −38…−29 −84…−76 −26…−17 LpFFG −36…−27 −66…−58 −21…−12 

RaFFG 35…44 −30…−21 −30…−21 LLOC −44…−35 −82…−73 −21…−12 

RmFFG 35…44 −44…−35 −30…−21 RaFFG 32…41 −41…−32 −24…−15 

RpFFG 34…44 −60…−51 −30…−21 RmFFG 33…42 −55…−46 −24…−15 

RLOC 24…33 −87…−78 −30…−21 RpFFG 31…40 −66…−57 −17…−8 

BC LaFFG −42…−33 −37…−26 −20…−11 RLOC 28…37 −86…−77 −17…−8 

LmFFG −42…−33 −50…−41 −20…−11 CC LaFFG −35…−26 −42…−33 −22…−13 

LpFFG −38…−29 −61…−52 −20…−11 LmFFG −34…−25 −55…−46 −22…−13 

LLOC −29…−20 −91…−82 −16…−7 LpFFG −33…−24 −65…−56 −22…−13 

RaFFG 38…47 −37…−28 −20…−11 LLOC −46…−37 −81…−72 −22…−13 

RmFFG 37…46 −50…−41 −20…−11 RaFFG 34…43 −44…−35 −22…−13 

RpFFG 37…46 −63…−55 −20…−11 RmFFG 32…41 −56…−47 −22…−13 

RLOC 33…42 −88…−79 −13…−4 RpFFG 27…37 −67…−58 −22…−13 

AM LaFFG −38…−29 −34…−25 −25…−16 RLOC 36…45 −87…−78 −22…−13 

LmFFG −40…−31 −45…−36 −25…−16 This table presents individual participants’ ROI coordinates. 

LpFFG −35…−26 −54…−46 −25…−16 

LLOC 

RaFFG 

−51…−42 

37…46 

−73…−64 

−33…−24 

−25…−16 

−25…−16 
match across the objects, t(16) = 39.99, p < .001,  d = 9.61.  
There were no differences between feature matches and no 

RmFFG 37…46 −44…−35 −25…−16 matches, although there was a trend, t(16) = 1.833, p = 

RpFFG 34…43 −54…−46 −25…−16 
.086, d = 0.503, with numerically higher “same” responses 
for feature match items. However, the proportions of same 

RLOC 43…−52 −72…−64 −19…−10 matches on both feature match and no match items were 

IE LaFFG −41…−32 −40…−31 −23…−14 extremely low. Thus, not surprisingly, category formation 

LmFFG −38…−29 −51…−42 −23…−14 
reflected a preference for shape similarity in these overt 
behavioral responses. 

LpFFG −37…−28 −62…−53 −23…−14 

LLOC −45…−26 −77…−68 −23…−14 

RaFFG 38…47 −38…−29 −23…−14 
Recognition Performance 

RmFFG 34…43 −49…−40 −23…−14 
Sensitivity was calculated for each participant as hits − 
false alarms separately for each condition (Figure 8). 

RpFFG 29…38 −64…−55 −26…−17 Sensitivity was then submitted to a 2 (Frequency: high vs. 

RLOC 25…34 −89…80 −22…−13 low) × 2 (Variability: variable vs. tight) repeated-measures 

KH LaFFG −42…−33 −32…−25 −21…−12 
ANOVA. There was no main effect of Variability, F(1, 16) = 
1.225, p = .285,  η2 = .071. There was, however, a main 

LmFFG −41…−32 −45…−36 −23…−14 effect of Frequency, F(1, 16) = 13.88, p = .002, η2 = 

LpFFG 

LLOC 

−39…−30 

−47…−38 

−56…−47 

−73…−64 

−23…−14 

−23…14 

.464, with high-frequency items having higher accuracy 
than low-frequency items. This interaction was not signif-
icant, F(1, 16) = 0.585, p = .455, η2 = .035. 

RaFFG 34…43 −32…−23 −22…−13 We also examined RTs on correct responses for learned 
items by performing a 2 (Frequency: high vs. low) × 2 

Plebanek and James 1405 
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Figure 7. Proportion of “same” responses in the categorization task 
across each trial type, *p < .001. Error bars represent ±1 standard error 
of the mean. 

(Variability: variable vs. tight) repeated-measures ANOVA 
(Figure 9). There were no main effects ( ps > .25) or inter-
actions, F(1, 16) = 1.62, p = .221.  

fMRI Data 

Data Localization 

The whole-brain contrast of learned object categories > 
fixation revealed significant activation differences in two 
large clusters spanning the left and right ventral temporal 
and occipital cortices (see Figure 5 and Table 1) when 
using a voxel-wise error rate p < .001. We corrected for 
multiple comparisons by using the BrainVoyager cluster 
threshold estimator plug in tool. We chose to use a 
whole-brain false-positive discovery rate of p < .05, which 
resulted in a cluster correction of six contiguous voxels, 
and a voxel-wise error rate of p < .001. Thus, there 
is evidence that ventral temporal regions such as the fusi-
form  gyrus and  the LOC  are involved in learning  these  

Figure 8. Sensitivity (hits − false alarms) by frequency collapsing 
across variability in the recognition task, *p < .01. Error bars represent 
±1 standard error of the mean. 

1406 Journal of Cognitive Neuroscience 

Figure 9. Comparison of high, low, and new across variable and linked 
items in the VTC ROIs (Figure 5, *p < .05). Error bars represent ±1 
standard error of the mean. 

novel symbols. This therefore served as our justification 
for placing ROIs throughout these regions. See Figure 6 
for a schematic of the ROI placement within these regions. 

ROI Analyses 

Familiar versus new. We first examined the overall 
effect of familiarity to determine if the neural ROIs were 
distinguishing between the implicitly learned and previ-
ously unseen objects. Data were therefore extracted from 
the eight ROIs for three conditions: [high variable 
linked], [low variable linked], and [new variable linked]. 
These conditions were selected to examine learning 
differences while equating variability and co-occurrences. 
Resultant data were then analyzed via a one-way ANOVA. 
Planned comparisons were then performed to better un-
derstand the role of familiarity. 
There was a significant effect of Condition (violated sphe-

ricity p = .022, Greenhouse Geisser: F(1.43, 22.90) = 4.47, 
p = .034, η2 = .217; see Figure 10). Follow-up comparisons 
revealed no difference between high- and low-frequency 
items, although activity for low was numerically greater, 
t(16) = 1.53 p = .145,  d = 0.383. New items demonstrated 
significantly greater activity than high items, t(16) = 2.33, 
p = .033,  d = 0.565. Similarly, new items demonstrated 
greater activation than low items, but this only trended 
toward significance, t(16) = 2.06, p = .056, d = 0.477.  
These initial results served to suggest that the VTC was 
sensitive to the difference between the implicitly learned 
items and unseen items, but did not reveal differential 
responding to high versus low frequency, implying that 
there was no potential effects of adaptation. 

Comparison of Structural Features 

Our main goal was to examine how the three structural 
features that were learned during the training sessions 
(frequency, variability, and co-occurrences) impacted the 

Volume 33, Number 8 
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Figure 10. Main effect of Variability collapsed across both hemispheres, 
all regions, and all other structural features, p < .01. Error bars represent 
±1 standard error of the mean. 

brain regions involved in processing object categories. 
ROIs were the same as the previous analysis except that, 
here, we also analyzed the data from primary visual cortex 
separately from the overall model to test whether there 
was differential responding based on category structure 
in this region. In primary visual cortex, we first performed 
a 2 (Frequency: high vs. low) × 2 (Variability: tight vs. 
variable) × 2 (Co-occurrence: linked vs. unlinked) × 2 
(Hemisphere: left vs. right) repeated-measures ANOVA. 
In primary visual cortex, there was no main effects for 
Frequency, F(1, 16) = 0.54, ns; Variability,  F(1, 16) = 
0.32, ns; Co-occurrence, F(1, 16) = 0.21, ns; or Hemisphere, 
F(1, 16) = 0.43, ns; and no interaction among the vari-
ables (all Fs < 1.0). Thus, primary visual areas did not 
show sensitivity to category structure in this design, but 
responded with a similar amplitude to all the presented 
objects. 
The data extracted from the remaining ROIs were then 

analyzed via a 2 (Frequency: high vs. low) × 2 (Variability: 
tight vs. variable) × 2 (Co-occurrence: linked vs. un-
linked) × 4 (Region: anterior FFG vs. mid FFG vs. poste-
rior FFG vs. LOC) × 2 (Hemisphere: left vs. right) 
repeated-measures ANOVA. Planned follow-up compari-
sons were performed for significant interactions and 
main effects. 
First, frequency trended toward significance, F(1, 16) = 

3.61, p =.071, η2 = .184, with low-frequency object catego-
ries having numerically greater BOLD activation than high-
frequency object categories. There was a main effect of 
Variability, F(1, 16) = 11.97, p = .003, η2 = .428, with greater 
activation for variable object categories compared to tight 
object categories (Figure 11). There was no main effect of 
Co-occurrence ( p > .20).  
In terms of brain areas, there was a significant main effect 

of Region (violated sphericity, p = .001, Greenhouse 
Geisser: F(1.92, 30.71) = 40.29, p < .001, η2 = .716; see 
Figure 12). We then performed planned comparisons to 
better understand the effect of region in processing object 
categories. In general, this main effect reflected the pattern 
that activation while processing object categories increased 

Figure 11. Main effect of Region collapsing across hemispheres and 
structural features with follow-up comparisons, *p < .05. Error bars 
represent ±1 standard error of the mean. 

as the ROIs were placed more posteriorly. Specifically, the 
LOC showed higher activation than all other regions, 
ts(16) > 5.30, ps < .001, ds > 1.22. The posterior fusiform 
gyrus was significantly greater than both the mid and 
anterior fusiform gyri, ts(16) > 2.70, ps < .016, ds > 0.657. 
Finally, the mid fusiform was greater than the anterior fusi-
form, t(16) = 4.66, p < .001, d = 1.18. There was also a 
main effect of hemisphere, F(1, 16) = 11.54, p = .004, η2 = 
.419, with greater activation across the right hemisphere 
while processing object categories (see Figure 12). 

We then examined interactions among our factors. No 
five-way or four-way interactions were significant. Two in-
teractions were significant. First, there was a significant 
variability by co-occurrence interaction, F(1, 16) = 7.60, 
p = .014, η2 = .322 (Figure 13). Specifically, there was 
significantly greater activation for processing variable 
compared to tight object categories when the object fea-
tures were also unlinked, t(16) = 4.23, p < .001, d = 
1.10. No other differences were significant ( ps > .075). 
In short, the interaction was driven by greater activity for 
variability-unlinked compared to variable-linked items. 

Figure 12. Main effect of Hemisphere collapsing across regions and 
structural features, p < .01. Error bars represent ±1 standard error of 
the mean. 
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Figure 13. A 2 (Variability: variability vs. tight) × 2 (Co-occurrence: 
linked vs. unlinked) interaction collapsing across co-occurrence, region, 
and hemisphere with follow-up comparisons, *p < .001. Error bars 
represent ±1 standard error of the mean. 

This suggests that variability may impact the detection of 
relevant co-occurrences of features. 

There was also a significant Variability × Co-Occurrence × 
Region interaction (violated sphericity, p = .021, F(2.25, 
36) = 4.11, p = 021, η2 = .204). We performed further 
analyses examining the Variability × Co-Occurrence inter-
action within individual regions (see Figure 14). There 

was no significant interaction in the anterior fusiform gyrus 
( p = .403). However, there were significant Variability × 
Co-occurrence interactions within the middle fusiform, 
F(1, 16) = 4.82, p = .043, η2 = .221; posterior fusiform, 
F(1, 16) = 11.26, p = .004, η2 = .413; and the LOC, F(1, 
16) = 4.98, p = .040, η2 = .237. Within the middle frontal 
gyrus, the interaction was driven by greater activity for 
variable-unlinked items compared to tight-unlinked items, 
t(16) = 2.93, p = .010, d = 0.710). No other comparisons 
were significant in this region, ( ps > .10). Within the pos-
terior fusiform gyrus, the pattern of the interaction was 
more complex. First, variability resulted in greater activation 
for unlinked items, t(16) = 4.46, p < .001, d = 1.09,  but no  
differences for linked items ( p > .150). Comparing across 
co-occurrence levels revealed greater activation for un-
linked variable compared to linked variable items, t(16) = 
2.37, p = .030,  d = 0.466. However, tight categories showed 
the reverse patterns with tight linked being greater than 
tight unlinked, t(16) = 2.332, p = .033, d = 0.565.  Within  
the LOC, the pattern of the interaction was similar to the 
middle fusiform gyrus. Specifically, the interaction was 
driven by greater activity for variable-unlinked items com-
pared to tight-unlinked items, t(16) = 4.27, p = .001,  d = 
1.05. No other comparisons were significant in this region, 
( ps > .10). In summary, variability is related to detecting 
the relevant co-occurrences of object features and this 
detection is primarily associated with the posterior fusi-
form gyrus. 

Figure 14. A 2 (Variability: variable vs. tight) × 2 (Co-occurrence: linked vs. unlinked) × 4 (Region: anterior vs. middle vs. posterior vs. LOC) 
interaction with follow-up comparisons, *p < .05, **p < .01. Error bars represent ±1 standard error of the mean. 
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DISCUSSION 

To better understand the role that structural aspects of 
categories play in forming object categories, we examined 
the responsiveness of the ventral temporal cortex to three 
previously learned structural aspects: frequency of exem-
plars, variability among exemplars, and co-occurrences 
among features among exemplars. To achieve this goal, 
we created a set of metrically organized object categories 
through which we could manipulate and quantify these 
properties. Participants were then exposed to the object 
categories during an implicit learning task. Following this 
task, participants completed a recognition task as well as 
neuroimaging sessions during which participants ob-
served learned an unlearned object categories composed 
of different structures. Through this paradigm, we were 
able to not only demonstrate that the fusiform gyrus and 
the LOC are sensitive to variability (and to a lesser extent 
frequency). We also demonstrated that some structural 
elements interact to impact how the brain regions process 
the categories. Our results can be summarized by three 
critical contributions: (1) Variability among category mem-
bers influences the detection of co-occurrences between 
object features. (2) This detection is also modulated by the 
brain region, with the posterior fusiform gyrus being 
especially sensitive to the variability–co-occurrence rela-
tionship. (3) Although shape frequency within a category 
affects overt measures of recognition and has some effect 
on BOLD signal, it does not interact in the same manner as 
variability and co-occurrence. 

Frequency 

Frequency and object typicality have long been known 
to play a role in the perception and learning of object 
categories. As previously noted, frequency and typicality 
have a mutual relationship and typicality judgments 
increase as category members are presented at higher 
frequencies (Nosofsky, 1988). Throughout development, 
frequency appears to be an important factor in under-
standing the early acquisition of infant’s words to adult’s 
categorization accuracy (Clerkin et al., 2017; Nosofsky, 
1988). Past neuroimaging findings have implicated the 
fusiform gyrus and the LOC in typicality measures of cate-
gory representation. For example, Davis and Poldrack 
(2014) created a category stimulus space that allowed for 
the manipulation of category exemplar features such as 
typicality. Patterns of activation for typical members were 
more similar to each other throughout the ventral– 
temporal and occipital regions than they were to atypical 
exemplars (Davis & Poldrack, 2014). In addition, Iordan 
et al. (2016) found that representational similarity associ-
ated with the LOC decreased as typicality of exemplars 
decreased. Our results corroborate these findings by sug-
gesting that “surprising” or atypical object categories may 
activate object category learning brain systems more than 
well-learned categories as evidenced by the greater 

activation associated with low frequency and new catego-
ries compared to higher frequency categories. This inter-
pretation of our neural data is in line with our behavioral 
data as well, where lower frequency items resulted in 
poorer accuracy suggesting that they leave weaker 
memory traces. Thus, the decreased responsiveness of 
the high-frequency (and low frequency to a lesser extent) 
categories compared to new categories may reflect more 
established representations of the learned categories. In 
summary, typicality and frequency may be proxies for 
object familiarity and can impact the brain systems re-
sponsible for processing object categories and shape 
their neural representations as well as overt recognition. 

Variability and Co-occurrences 

Variability has also been established as a factor in the mech-
anisms supporting category representation. Behaviorally, 
variability has been known to support object recognition, 
categorization, and generalization across the life span (Li 
& James, 2016; Perry et al., 2010; Harman & Humphreys, 
1999). Our findings demonstrate that the ventral temporal 
cortex is involved in processing this variability and corrob-
orates previous findings in symbol and category formation 
(Plebanek & James, 2021; Vinci-Booher et al., 2019; James, 
2017; James & Engelhardt, 2012). We believe that this vari-
ability is most important in forming the initial representa-
tion of category. 

However, our findings point to another role for variability: 
identifying relevant co-occurrences within the category 
structure. Research has already established the brain is 
primed to extract structural regularities even though the 
learner may not be explicitly aware of such regularities 
(Turk-Browne et al., 2009). Our findings suggest that vari-
ability may make the representation of the feature co-
occurrences a stronger component of the object category 
representation. Specifically, unlinked features resulted in 
greater activation when the categories were also variable 
whereas linked features were more equivalently processed 
for variable and tight category structures. 

Previous findings in category generalization have sup-
ported this role. Plebanek and James (2021) found that pro-
viding adults and 8-year-olds with variability during category 
learning leads to generalization (based on increased brain 
activation) via the feature that was invariant. In contrast, 
highly similar exposure led to generalization based on 
the overall appearance of the exemplar (Plebanek & 
James, 2021). Taken together, these and our current 
findings suggest that, from variability, category structure 
emerges. Furthermore, this structure may be representa-
tive of co-occurrences: be they co-occurrences of time and 
space, features and category membership, or features to 
other features. 

Categories and the Brain 

The neural correlates of category learning have long been 
debated. At the heart of this debate is the origin of 
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category representations in the brain. Some researchers 
propose functionally specialized centers such as the fusi-
form face area (Kanwisher, McDermott, & Chun, 1997) 
whereas others propose process-driven expertise with 
categories drive neural specialization (Gauthier, 
Skudlarski, Gore, & Anderson, 2000). An additional can-
didate theory proposes that the brain represents informa-
tion about categories that may overlap throughout the 
ventral temporal cortex (Haxby et al., 2001). These theo-
ries place different burdens on the role of the category. 
Specialization theories suggest something inherent about 
the category triggers domain-specific brain systems 
(Kanwisher, 2017). Alternatively, these specialized re-
gions may encode other information regarding nonspe-
cialized categories (Haxby et al., 2001). Thus, there is a 
conflict in the relationship between the brain regions 
and categories in dictating category formation. 

Our findings suggest a different pathway toward cate-
gory representation. The internal structure of categories 
recruit different neural systems. Specifically, we identified 
sensitivity to variability and feature co-occurrence that in-
creased in the posterior fusiform gyrus relative to other 
regions. This finding parallels past research profiling the 
fusiform gyrus’ responsiveness to letters and letter 
strings. For example, James, James, Jobard, Wong, and 
Gauthier (2005) found that the left anterior fusiform gy-
rus was selective for individual letters whereas the poste-
rior fusiform gyrus was selective for strings of letters. 
Other works on the organization of the brain regions 
involved in processing letters have supported a gradient-
style organization, although the exact distribution of sen-
sitivity is disagreed upon ( Vinckier et al., 2007). More 
broadly, the occipito-temporal cortex may also show 
graded sensitivity to the eccentricity of objects (Hasson, 
Levy, Behrmann, Hendler, & Malach, 2002). Our results 
suggest that a potential explanation for this heterogeneity 
within brain regions is the subtle statistical differences, 
most likely those stemming from variability, present in 
object categories. 

Thus, the recruitment of different regions throughout 
the ventral temporal cortices may also reflect the extrac-
tion of the internal, statistical structures of categories that 
guides the formation of representations. In our study, 
structural elements such as variability may be closely tied 
to perceptual features and thus guide the patterns of sim-
ilarity in the brain as well as the systems that process cat-
egories. Therefore, future evaluation of this theory may 
be supplemented with the more distributed accounts of 
category representations, which are guided, in part, by 
perceptual elements that reflect the acquired stimulus 
space (Kriegeskorte, Mur, & Bandettini, 2008). 

Conclusions 

Object categories have rich, internal structures that may 
impact the brain systems recruited to learn novel catego-
ries. Here, we created metrically organized categories that 

allowed us to operationalize variability, frequency, and  
co-occurrence structures of novel categories. We have 
demonstrated that the fusiform gyrus and the LOC are 
sensitive to these structural elements. Moreover, as 
regions move posteriorly through the fusiform gyrus, 
sensitivity to structural properties (in particular the 
variability-to-co-occurrence relationship) increases. In 
short, we have demonstrated that the internal statistics 
of object categories are critical in learning. Thus, future 
research should not take for granted the role of structure 
in exploring category learning dynamics. 
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were M/M = .579, W/M = .243, M/W = .102, and W/W = 
.076 (Fulvio et al., JoCN, 33:1,  pp.  3–7). Consequently, JoCN 
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when selecting which articles to cite and gives them the 
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