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Abstract 
Perceptual variability is often viewed as having multiple benefts in object learning and categorization. Despite the abundant 
results demonstrating benefts such as increased transfer of knowledge, the neural mechanisms underlying variability as well 
as the developmental trajectories of how variability precipitates changes to category boundaries are unknown. By manipulat-
ing an individual’s exposure to variability of novel, metrically organized categories during an fMRI-adaptation paradigm, 
we were able to assess the functional diferences between similarity and variability in category learning and generalization 
across two time-points in development: adulthood (n = 14) and late childhood (n = 13). During this study, participants were 
repeatedly exposed to category members from diferent distributions. After a period of adaptation, a deviant stimulus that 
difered from the expected distribution was then presented. This deviant difered in either an invariant dimension (a feature 
that remained consistent throughout presentation was altered) or a similarity dimension (a feature that changed throughout 
exposure was changed in a new dimension). Our results can be summarized in three main fndings: (1) Variability during 
exposure recruited the right fusiform gyrus to a greater extent than tight exposure. (2) Deviant items were generalized based 
on the exemplar distributions during exposure, although children only generalized items if provided variable exposure. (3) 
Variability infuenced release to a greater extent in children than adults. These results are discussed in relation to the vari-
ability and category learning literature more broadly. 

Keywords Variability · Category learning · Development · Neural adaptation · FMRI 

Category structure guides the formation 
of neural representations 

Category learning is a central feat of cognition. The abil-
ity to group objects into categories allows individuals to 
fexibly adapt and act both accurately and optimally. The 
internal structure of a category—the relationship among its 
members——is important for understanding how we create 
category boundaries. Across auditory, visual, and motoric 
domains, individuals are extremely capable of learning 
category boundaries by extracting commonalities among 
members and transferring these regularities to new instances 
(Dhawale et al. 2017; Fiser and Aslin 2001; Safran et al. 
1996). These processes are so inherent that individuals 
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extract category structure from noise without awareness 
(Turk-Browne et al. 2009). 

Thus, the distributional information among category 
members is easily attainable, but how one uses this informa-
tion for category formation is less clear. To efectively learn 
a category, a system must be able to extract critical features 
that defne membership while ignoring irrelevant features 
that may occur across category boundaries (be present in 
multiple, diferent categories) (eg. Smith 1989; Sloutsky 
2010). For example, color is an irrelevant feature of the cate-
gory “duck”, but “bill” is a critical feature. One is better able 
to learn the duck category if presented with many diferent 
exemplars of varying colors, rather than only white ducks. 
There is mounting evidence that high variability in these 
irrelevant features among members within a given category 
may enhance the ability to extract the critical feature(s) to 
defne membership. For instance, Perry et al. (2010) dem-
onstrated that providing variable exemplars during novel 
category learning not only supports the acquisition of more 
immediate understandings of the relevant category, but 
also facilitates a broader understanding of global category 1 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-021-06088-7&domain=pdf
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structure. Additionally, research on object orientation has 
demonstrated that receiving more variably organized views 
in comparison to continuous object views results in faster 
recognition of novel objects (Harman and Humphrey 1999). 
Further, classifying objects (e.g., circles) into known catego-
ries that are either highly variable (pizzas) or low variabil-
ity categories (quarters) results in classifcation into highly 
variable categories even if the feature (size) of the novel 
object is equidistant to both category exemplars given (Rips 
1989). In a similar paradigm that involved learning catego-
ries that were either highly variable or had low variability 
among members on two feature dimensions (in this case 
brightness and hue) also resulted in higher classifcation of 
a target stimulus into the highly variable category (Cohen 
et al. 2001). 

Variability among category members has been shown 
to also infuence how learning categories proceeds during 
development. Self-generated variability such as rotation 
of objects supports learning in infancy (Slone et al. 2019) 
toddlers (James et al. 2014) and in adulthood (James et al. 
2002). Even without self-generated action, variability facil-
itates young children’s learning of new object categories 
including symbols (Li and James 2016; James 2017). 

In addition, Quinn et al. (1993) demonstrated that an 
infant’s natural categories of cats and dogs were depend-
ent on the distributions of category members during learn-
ing. If infants saw a series of dogs, the category formed 
also included cats. However, if infants saw a series of cats, 
the category excluded dogs. Furthermore, if the variability 
of the dog exposure was equalized to the narrower cat cat-
egory, infants no longer assimilated cats into the dog cate-
gory. Therefore, it is clear that variability, as well as how the 
exemplars of a category are encountered, can afect category 
formation, demonstrating its dynamic nature. 

Even though variability afects category learning in both 
adults and children, research has demonstrated that how 
categories are learned in childhood compared to adulthood 
has revealed some important diferences. Past behavioral 
studies have demonstrated that while adults are capable of 
forming categories based on critical features alone, children 
form broader representations that often include features that 
are irrelevant to category membership (Deng and Sloutsky 
2015, 2016; Smith and Kemler 1977; Rabi et al. 2015). 
Specifcally, young children tend to group items together 
based on overall similarity instead of on a diagnostic feature 
(eg. Smith 1989). Both of these strategies can be infuenced 
by variability among members. For example, variability in 
irrelevant features may serve to highlight the consistent fea-
tures, aiding the abstraction of relevant structure and critical 
features (Medin et al. 1993). Variability also decreases the 
similarity among irrelevant features, precluding the ability 
to group members based on overall similarity (eg., Sloutsky 
2010). Therefore, many researchers propose that variability 

plays a substantial role in category learning through both 
routes (Estes and Burke 1953; Perry et al. 2010; Posner and 
Keele 1968; Smith and Thelen 2003). 

Interestingly, there is a switch in terms of how category 
structure is learned during childhood. Early in development, 
children learn categories by grouping members together 
that share overall similarity (e.g., ducks and chickens). As 
described above, this is not an efective way of forming a cat-
egory, and, therefore, young children (until about age 7–8) 
often form broader categories than adults (e.g., Deng and 
Sloutsky 2016). Ages 7–9 are considered transitional, when 
children begin to form categories based on diagnostic fea-
tures more than overall similarity and display more accurate 
(adult-like) category formation. Previous work has demon-
strated that variability in non-diagnostic features of category 
members does not facilitate younger children’s (5- to 6-year-
olds) category formation based on diagnostic features, but 
it does efect 8-year-olds category learning (Plebanek and 
James, under review). Although the categorization ability 
of 8-year old children was afected by variability, this age 
group did not categorize novel members by matching the 
diagnostic feature as much as would be expected by adults. 
This fnding supports the assumption this age group is in a 
transitional stage of category learning (Deng and Sloutsky 
2015, 2016; Plebanek and Sloutsky 2019; Smith and Kemler 
1977; Plebanek and James, under review). 

Another contributing factor to category learning in addi-
tion to category structure (degree of variability) is how the 
category is learned. The measurements of category learning 
are often limited by requiring both explicit training para-
digms as well as singular, explicit categorization responses 
(e.g., Ashby et al. 2019; Ashby and Valentin 2017). Because 
many categories are learned without explicit feedback, there 
must be a mechanism that supports categorization with 
implicit exposure only. Ashby et al. (2019) have asserted that 
implicit category learning is no more difcult than explicit 
learning, but relies more on procedural learning rather than 
verbal working memory. Given that young children have 
limited working memory ability (e.g., Cowan and Alloway 
1997), explicit category learning may be more difcult than 
implicit category learning. It is also possible that children 
can learn categories with either explicit learning or implicit 
exposure as well as adults, but response demands preclude 
this demonstration. That is, children can have difculty in 
task understanding, in verbal response (e.g., Engle et al. 
1991), and have slower reaction times and lower accuracy 
than adults overall (e.g., Manning et al. 2018). In addition, 
there is very high variability among children throughout the 
elementary school years in terms of working memory and 
response to verbal instruction (Engle et al. 1991). It is argu-
able that explicit categorization tasks require an understand-
ing of verbal instruction, working memory and attention, 
all of which are immature in the child compared to a typical 
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adult (e.g., Konrad et al. 2005). Therefore, implicit learn-
ing without verbal instruction and measuring competencies 
without overt verbal or manual responses may allow the 
researcher to acquire a more accurate understanding of the 
learning capabilities of young children and provide an unbi-
ased comparison of object processing in children and adults. 

One way to measure object processing and category 
learning without the need for overt responses is through neu-
roimaging techniques. As described above, this is important 
in developmental science, given the difculty in designing 
experiments that accurately refect a child’s knowledge. In 
isolation, however, this is rarely viewed as an appropriate 
reason for conducting neuroimaging studies. More impor-
tantly, neuroimaging data can provide information on how a 
given behavioral outcome is supported by neural processes 
and how these processes may difer depending on experi-
mental manipulations or preexisting variables (e.g., age). 
Thus, we are not only concerned simply with the output of a 
process, but also with the process itself and how this changes 
with experience. Arguably, this is extremely important when 
studying learning, as there may be multiple routes in the 
brain for attaining a similar behavioral result (neural degen-
eracy) and these routes can change with age or experience. 

In addition, neuroimaging measures are more sensitive 
than behavioral measures. A simple example is as follows: 
By a certain age (around 5), young children can recognize 
letters of the alphabet when they are presented in typed form 
or if those same letters are written by hand (e.g., Zemlock 
et al. 2018). We, therefore, assume from this behavioral 
result that typed and handwritten letters are processed in 
the same way by a certain age. Recent neuroimaging results, 
however, have shown that this not entirely correct. The neu-
ral systems of young children process handwritten letters 
very diferently from typed letters, but in older children and 
adults the processing is virtually the same (Vinci-Booher 
et al. 2020). Even though behavioral responses did not reveal 
that letters that are handwritten vs typed as processed as dif-
ferent categories in young children, the fMRI data allowed 
us to see this explicitly, and generated hypotheses about 
why this might be the case. Thus, neuroimaging can reveal 
processing differences that are missed with behavioral 
measures. 

Furthermore, neuroimaging can reveal how certain sys-
tems process environmental stimuli, which allows one to 
better understand brain function itself. For example, there 
is a long history of fMRI work demonstrating that the VTC 
highly involved with object processing (e.g., Grill-Spector 
et al. 2001). However, past research has also demonstrated 
that neural specialization for object categories in the ventral 
temporal cortex only emerges as a function of certain experi-
ences (e.g., James 2010; James and Engelhardt 2012; Scherf 
et al. 2011). Further, that the role of certain brain systems 
can change through development (e.g., Vinci-Booher et al. 

2020). Such work has led to insights into developmental 
competencies that result from neural system changes that 
could not be revealed with behavioral measures alone. 

One valuable method of neuroimaging that has proven 
to enhance our understanding of category representation in 
the brain is the neural adaptation paradigm. A long history 
of research has shown that neurons, populations of neurons, 
and brain regions respond preferentially to specifc environ-
mental inputs. This ranges from the seminal work of Hubel 
and Wiesel in felines detecting line orientations to research 
examining face processing throughout the ventral tempo-
ral cortex (VTC) (Hubel and Wiesel 1959; Kanwisher et al. 
1997). Neural adaptation can help us further understand 
such input by invoking a biological predisposition of the 
brain to reduce activation across repetitions of stimuli (Grill-
Spector and Malach 2001). Although adaptation was origi-
nally studied through single cell recordings of non-human 
animals (Desimone 1996), one can use coarser measures to 
investigate adaptation in humans using functional magnetic 
resonance imaging (fMRI). For example, Grill-Spector and 
Weiner (2014) adapted neuronal populations to study object 
properties: size, position, illumination, and viewpoint, and 
whether they infuenced representations. Interestingly for 
category learning, the repeated stimuli do not need to be 
identical for brain responses to diminish. Rather, in some 
regions of the VTC, neural adaptation occurs during expo-
sure to repetitions of category members, even if they are dif-
ferent exemplars of the category (Grill-Spector and Malach 
2001). When a subsequent stimulus belongs to a diferent 
category, relevant brain systems increase their responding, 
indicating a ‘release from adaptation.’ Thus, one can manip-
ulate exemplar similarity during exposure to determine 
where a category boundary lies by observing under what 
conditions ‘release’ occurs (Folstein et al. 2012). Impor-
tantly for the present work, neural adaptation paradigms have 
been used successfully when comparing children of various 
ages to adults (e.g., Scherf et al. 2011; Kadosh et al. 2013). 
These past studies have established that the neural properties 
of adaptation do not change through development. That is, 
the 5-year-old brain shows neural adaptation properties just 
as the adult brain does. The method is especially useful for 
studying child populations given that there is no need for an 
explicit task to reveal an adaptation response from the brain. 
Measuring category learning through neuroimaging tech-
niques such as neural adaptation can, therefore (a) allow the 
measurement of learning without overt responses, (b) reveal 
changes that occur in underlying mechanisms that may not 
be measurable in overt responses, and (c) is particularly use-
ful for understanding category learning through adaptation 
paradigms in developing populations. 

The purpose of the present study was to probe the poten-
tial efects that diferent degrees of variability have on cat-
egory learning and neural processing in 8-year-olds and 
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adults by measuring brain adaptation and release from adap-
tation. We compared exposure to category members that are 
similar to one another (tight structure) to those that are more 
dissimilar (variable structure) and measured neural adap-
tation, and release from adaptation, in the entire brain but 
were most interested in responses in the Ventral Temporal 
Cortex (VTC). As shown by previous work, we hypothesized 
that exposure to variability during category learning would 
facilitate the extraction of diagnostic features that defned 
category membership (Medin et al. 1993). We predicted that 
with variable exposure, an object presented after category 
exposure would result in a release from adaptation, but only 
if that object difered in the diagnostic feature. This result 
would directly refect behavioral fndings in adults (Cohen 
et al. 2001). We further predicted that if 8-year-old children 
were using the same neural mechanisms as adults to catego-
rize objects, then this group would show the same pattern of 
adaptation as the adults. However, if 8-year-olds were truly 
transitioning between categorizing based on similarity to 
categorizing based on diagnostic feature, then we may see 
release from adaptation both when new objects did not share 
the same diagnostic feature and when they difered based on 
the irrelevant features. We chose to focus our interpretations 
on the VTC, given the well-known response properties of 
this broad region during object processing. Research has 
shown that the VTC responds to objects in a similar manner 
in children compared to adults (Dekker et al. 2011). How-
ever, we also attended to age diferences in the entire brain, 
given that dorsal stream processing (posterior parietal cortex 
in particular) has a protracted development compared to the 
VTC (Dekker et al. 2011). This may be important given the 
conjecture that implicit category learning may require more 
of a procedural learning mechanism rather than working 
memory and attention (Cohen et al. 2001). Given that work-
ing memory and attention is also immature in children, we 
remained agnostic to hypotheses related to the frontal sys-
tems because immaturity in these competencies could either 
show more activation in frontal systems (because they are 
not as efcient) or less activity because they are not recruited 
(e.g., Conklin et al. 2007). Because response properties are 
similar in adults and children in the VTC, we focused our 
conclusions on responses in this region to avoid any spuri-
ous conclusions due to maturational diferences in the two 
populations. Specifcally, we hypothesized that adults would 
show release from adaptation in this region to both variable 
and tight category structures, given the expertise with which 
adults can abstract critical features in category members. 
This release is expected to be more consistent when the devi-
ant stimulus difers from the exposure stimuli in terms of 
the invariant (diagnostic) feature. However, because children 
are thought to be in a transitional stage in terms of how 
they assign members to categories, we expected that expo-
sure to a variable structure would result in a release from 

adaptation more than exposure to a tight category structure 
and further that release from adaptation would occur with 
similarity deviants as well as invariant feature deviants given 
the transitional nature of children’s categorization strategies. 

Methods 

Participants 

The final sample included 14 adults (M = 22.2  years, 
range = 18–28 years, seven males) and thirteen 8-year-old 
children (M = 8.7 years, range = 7.7–9.1 years, fve males).1 

Two additional adults were excluded: one for equipment 
failure and one for experimenter error. Four additional chil-
dren were excluded: three for excessive motion2 and one for 
equipment failure. 

The ages were selected for two reasons: (1) The devel-
opment of category representations via a singular feature 
undergoes a protracted developmental trajectory maturing 
around approximately 8 years of age (Deng and Sloutsky 
2015, 2016; Plebanek and Sloutsky 2019; Smith and Kemler 
1977). (2) Behavioral data measuring implicit categoriza-
tion judgments using these stimuli revealed that younger 
children were not sensitive to variability without task sup-
port (Plebanek and James, under review). In contrast, 7- and 
8-year-old children were sensitive to variability (Plebanek 
and James, under review). 

Adult participants were graduate or undergraduate stu-
dents. Children were recruited from the local community 
using an in-house database. Each participant and parent 
provided informed consent and/or assent and were compen-
sated $25 per hour ($20 gift card and a toy for children). 
Participants were right handed, spoke English as a primary 
language, and were screened for neurological trauma and 
MRI contraindications. 

1 Of the included children, two children only contributed data from 
two functional runs due to excessive motion. For all children, this 
useable data was for separate categories and category structures, thus 
every participant contributed at least 1 useable run in each exposure 
condition. This resulted in 48 (24 tight and 24 variable) useable runs 
for children compared to 56 (28 tight and 28 variable) useable runs 
for adults. 
2 To keep an equal number of variable and tight runs and an equal 
number of runs for each category, runs were grouped into pairs (Tight 
Flower and Far Alien; Tight Alien and Far Flower). Both runs in a 
pair were excluded if one of the runs had more than fve spikes or 
they had a combined total of more than eight spikes. No adults had no 
motion spikes. Children had an average of 1.9 spikes on variable runs 
and an average of 1.6 spikes on tight runs. 
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Materials and stimuli 

Apparatus 

Stimuli were presented using a Mitsubishi XL30 projector 
that was back presented onto a screen in the MRI environ-
ment using a mirror. Instructions were given to partici-
pants via Siemens MR-compatible headphones. A Matlab 
program using the Psychophysics Toolbox extensions was 
created to dictate the presentation of stimuli (Brainard and 
Vision 1997; Pelli and Vision 1997). Manual responses dur-
ing scanning were made on an in-house constructed 4-fn-
ger response pad placed underneath the right hand of the 
participants. 

Stimuli 

For the learning runs, the stimuli were comprised of system-
atically organized sets of objects called “Aliens” and “Flow-
ers.” These stimulus sets each consisted of four dimensions 
that could be manipulated metrically to create 18 possible 
values on each dimension (Appendix 1). For the alien set, 
these dimensions included the length of the eye stalk, the 
surface area of the body, the angle of the arms, and the 
vertex of the hand and arm. For the fower set, dimensions 
included the gradient of the center, the roundness of the 
petals, the width of the stem, and the rotation of the symbol 
on the pot. 

The inclusion of multiple, continuous dimensions was 
important for several reasons. First, it allowed us to manipu-
late the learning stimuli to control the similarity and struc-
ture of the category. We selected three dimensions of each 
set to vary continuously to create what is henceforth referred 
to as the “similarity space”. The fourth dimension, hence-
forth referred to as the “invariant feature”3, could vary to the 
same extent as the other dimensions, but remained constant 
on the central value of the dimension. Therefore, the invari-
ant feature was more “predictive” of category membership. 
This structure allowed us to establish a dichotomy in our 
categories to mimic the rule-plus-similarity structures of 
categories used by other research such as Deng and Slout-
sky (2015, 2016). Second, the use of a continuous similar-
ity space allowed us to clearly defne the variability of the 
categories to which each individual was exposed. We cre-
ated two diferent levels of variability (tight and variable) 

Note that in many studies using similar category designs, the 
invariant feature is referred to as the rule (see Deng and Sloutsky, 
2015 and 2016). However, because the categories were not explic-
itly taught, and because the design is ultimately agnostic to whether 
invariant deviants do or do not belong within the category, we believe 
“invariant deviants” to be a more accurate description of these items 
in this study. 

by manipulating the distribution of the similarity space 
(Fig. 1a). Therefore, we were able to quantify and manipu-
late the variability in order to alter the similarity component 
of our category structures (Appendix 1). Finally, because 
our categories consisted of two streams of information 
(the similarity space and the invariant feature), we further 
manipulated the category features to create test stimuli 
called “deviant stimuli.” Deviant stimuli had two classes: 
similarity-based and invariant feature-based. Similarity-
based deviants were created by continuously manipulating 
a dimension from the similarity space in a manner that was 
inconsistent with the standard construction of the dimension. 
For example, in the fower set, although the gradient dimen-
sion appeared horizontally, a similarity-based deviant could 
rotate the gradient (Fig. 1b). Each of the three dimensions 
in the similarity space had two potential deviants, resulting 
in a total of six similarity-based deviants. Invariant feature-
based deviants were constructed by introducing new val-
ues on the invariant dimension (the hand vertex in aliens 
or symbol rotation in fowers). Two deviants were created 
for each category by manipulating the invariant feature in 
opposite directions across its dimension. These deviants 
were repeated three times each, resulting in a total of six 
presentations of invariant-deviants per run. For both devi-
ants, the non-deviant features were values sampled from the 
tight similarity space. 

Design 

Participants completed four functional neuroimaging runs. 
Each of the four functional runs followed the same adapta-
tion design and lasted 306 s (5 min and 6 s). Runs were 
counterbalanced so that each participant received diferent 
categories and structures as their frst two runs. The goal 
was to explore how individuals’ neural activation adapted 
to repeated presentation of category members and how this 
adaptation was afected (maintenance or release) in response 
to the deviant stimuli. To achieve this goal, we implemented 
a design that combined elements of blocked and event-
related fMRI (Fig. 1c) for 750 ms followed by a short 250-
ms black fxation cross. This resulted in blocks consisting 
of the adaptation stimuli lasting 16 s each. 

A deviant stimulus (either similarity or invariant, pre-
sented in a randomized order) then appeared for 2 s. Deviant 
stimuli always appeared in the center of the display. After 
2 s, the deviant stimulus was removed from the screen and 
replaced with a fxation cross for a jittered interval (2, 4, or 
6 s). Each of these runs consisted of 12 blocks followed by a 
deviant. Each run contained six invariant and six similarity 
deviants. This type of design has been used successfully in 
neural adaptation studies comparing children to adults (e.g., 
Kadosh et al. 2013). 

3 
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    Fig. 1 Depiction of the stimuli and procedure in the experiment. a 
presents the alien and fower similarity space. Present are the three 
continuous dimensions ranging from value 1 to 18 that comprised 
the similarity space. Each number across this range corresponds to 
a specifc quantity for a given dimension (e.g., eye height). Every 
increase in value corresponds to a specifc quantitative change (e.g., 
an increase in eye height). The blue cube represents the narrow sam-

Procedure 

Imaging procedure 

After providing informed consent, participants were escorted 
to the imaging facility. Children completed a brief train-
ing session in a MRI simulator to acclimate to the scanning 
environment. This session lasted approximately 15 min, dur-
ing which children watched short videos and were taught to 
remain still during the scan. They did not see experimental 
stimuli during this time. Adults did not complete this ses-
sion. At the start of the actual scan, participants underwent 
an anatomical scan, during which they watched a video 
(children) or rested (adults). Participants then began the 
functional runs. During the runs, participants were told to 
track the items as they appeared on the screen, and when 

pling of the tight similarity space comprising only values 8–10. The 
light gray cube represents the more diverse sampling of the variable 
similarity space comprising of values 4–14. b presents examples of 
deviant stimuli. c presents the fMRI protocol used for adaptation 
runs. During the blocks (green portion) individuals saw the 16 rep-
etitions of category members, during the deviant event (red portion) 
participants were shown either an invariant or a similarity deviant 

items were presented in the center of the screen to press 
the button on the response pad with their right index fnger. 
When items were presented of-center, to press a button on 
the response pad with their right middle fnger. Participants 
were given the response pad and shown the screen prior to 
entering the bore of the scanner and practiced button press-
ing to ensure they understood the task. This task was imple-
mented only to enhance attention to the stimuli (category 
exposure was implicit) and response accuracy was not meas-
ured, due to the blocked design. However, compliance with 
the task was noted by the experimenter in the scanning room 
with the participants. Our previous behavioral study found 
that children as young as 5 years of age perform at ceiling 
level in this task (Plebanek and James, under review). All 
participants performed the task with ease. Scanning sessions 
lasted between 30 and 45 min. 
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Scanning parameters 

Neuroimaging was conducted at the Indiana Univer-
sity Imaging Research Facility, using a Siemens Mag-
netom Prisma 3-T whole-body MRI system. High-reso-
lution T1-weighted anatomical volumes were acquired 
using a MPRAGE sequence: TI = 900 ms, TE = 2.98 ms, 
TR = 2300 ms, fip angle = 9°, with 176 sagittal slices of 
1.0 mm thickness, a feld of view of 256× 

3248 mm, and an isometric voxel size of 1.0 mm  For . 
functional images, the feld of view was 220 × 220 mm, 
with an in-plane resolution of 110 × 110 pixels and 72 axial 
slices of 2.0 mm thickness per volume with 0% slice gap, 
producing an isometric voxel size of 2.0 mm3. Functional 
images were acquired using a gradient echo EPI sequence 
with interleaved slice order: TE = 30 ms, TR = 2000 ms, 
fip angle = 52° for blood-oxygen-level-dependent (BOLD) 
imaging. 

Neuroimaging preprocessing 

All neuroimaging analyses were conducted using Brain 
Voyager, Version 20 (Brain Innovation, Maastricht, Neth-
erlands). Anatomical volumes for each individual were nor-
malized to the adult template in Talairach space (Talairach 
and Tournoux 1988). The functional preprocessing pipeline 
included slice scan time correction, 3-D motion correction 
using trilinear/sinc interpolation, and 3D Gaussian spatial 
smoothing with at 6 mm. During normalization, functional 
data were resampled to 3 mm3 isometric voxels. Coregis-
tration of functional volumes to anatomical volumes was 
performed using a rigid body transformation. Rigid body 
parameters were included in the study design matrix as pre-
dictors of no interest to account for head motion (Bullmore 
et al. 1999). 

Statistical analyses 

The data were analyzed using a random-efects general 
linear model (GLM) using Brain Voyager’s multi-subject 
GLM module with one predictor of interest for each condi-
tion and seven predictors of no interest that were included 
only for motion correction. The analyses were split into two 
mixed model, whole-brain ANOVAs. The frst ANOVA 
examined group diferences in learning the structures dur-
ing the 16 s learning blocks using betas as our dependent 
measure: 2 (Structure: Variable vs. Tight) by 2 (Age: Adults 
vs. Children). The second analysis examined generaliza-
tion, 2 (Structure: Variable vs. Tight) by 2 (Deviant: Invari-
ant vs. Similarity) by 2 (Age: Adults vs. Children), using 
release as the dependent measure. Release was calculated 
by measuring the diference in neural response between the 
deviant stimulus and the last three seconds of the adapted 

Fig. 2 Analysis of learning blocks examining diference in variable 
and tight learning across repetitions using contrast, variable> tight 
across the entire 16  s learning block, voxelwise threshold, p <0.01, 
cluster corrected to p <0.01 

stimuli. Resulting F and t-maps were corrected for multi-
ple comparisons by analyses using a voxel-wise threshold 
of pvoxel < 0.01, and cluster corrected to pcluster < 0.01 using 
Brain Voyager’s cluster-threshold estimator plug-in. We 
then examined the interactions through a series of planned 
comparisons. 

Results 

Variability during learning 

We averaged the total activation during the adaptation por-
tion of the experiment to determine whether neural adapta-
tion was occurring and whether this changed depending on 
age and category structure. Lower mean activation across 
this block would imply that the system considers the stimuli 
to be very similar (belonging to the same category), whereas 
higher activation would imply that there are diferences 
among the stimuli for neural systems. 

We frst performed a 2 (Structure: Variable vs. Tight) 
× 2 (Age: Adults vs. Children) mixed model ANOVA 
(pvoxel < 0.01, pcluster < 0.01) on the adaptation portion of the 
runs. There was a main efect of Structure (F(1, 25)=30.82, 
h2 = 0.552) associated with the right fusiform gyrus that 
demonstrated higher activation for variable compared to 
tight blocks. No clusters demonstrated the reverse pattern 
(Fig. 2; Table 1). Thus, because the right fusiform gyrus is 

https://25)=30.82
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Table 1 Efects from analysis 1 

Efect Contrast Cluster size Talairach coordinates Peak stat Average p value Anatomical location 
(voxels) 

Peak x Peak y Peak z 

Main structure Tight > variable – – – – – – – 
Variable > tight 7825 51 − 58 − 11 5.77 0.003 Right fusiform gyrus 

Main group Adults > children 2290 24 − 46 − 25 4.58 0.007 Right fusiform gyrus 
Children > adults 933 12 29 − 11 3.86 0.006 Right anterior cingulate 

1700 24 23 − 5 4.84 0.005 
1797 39 − 58 − 2 5.46 0.004 Right middle temporal gyrus 
6551 54 10 4 5.42 0.004 Right superior temporal gyrus 
17,313 − 48 23 4 4.91 0.004 Left frontal gyri 
8545 − 48 2 9 4.95 0.004 Left superior frontal gyrus 
3535 − 27 7 14 4.42 0.004 Left hippocampus 
3507 25 1 17 5.22 0.004 Right Hippocampus 
1214 6 − 34 40 4.39 0.005 Right posterior cingulate gyrus 
2370 45 11 52 4.22 0.005 Right middle frontal gyrus 
10,236 21 49 58 5.30 0.003 Right inferior parietal lobule 

Structure – 528 − 57 − 19 25 11.21 0.003 Left post central gyrus 
Age – 462 6 32 52 17.71 0.005 Right superior frontal gyrus 

adapting (lowering activation) to tightly structured catego-
ries but not variable structure, we can assume that it pro-
cesses each stimulus as diferent when exposed to variable 
exemplars. 

There were several regions associated with a main 
efect of Group (pvoxel < 0.01, pcluster < 0.01). One cluster 
in the right fusiform gyrus demonstrated greater activation 
overall for adults compared to children (F(1, 25) = 16.98, 
h2 = 0.404), implying that the stimuli were processed as dif-
ferent in adults more than children in this region. In con-
trast, children demonstrated higher activation than adults 
associated with the left (F(1, 25) = 16.86, h2 = 0.403) and 
right hippocampus (F(1, 25) = 20.05, h2 = 0.445), the left 
superior temporal gyrus (F(1, 25) = 27.38, h2 = 0.523), the 
right middle (F(1, 25) = 32.61, h2 = 0.566), and superior 
temporal gyri (F(1, 25) = 29.29, h2 = 0.540), the right infe-
rior parietal lobule (F(1, 25) = 25.36, h2 = 0.504), the left 
frontal gyri (Fs(1, 25) > 14.45, h2s > 0.367) the right middle 
frontal gyrus (F(1, 25) = 17.93, h2 = 0.418), the right poste-
rior cingulate gyrus (F(1, 25) = 14.19, h2 = 0.362), and the 
anterior cingulate (Fs(1, 25) > 16.50, h2s > 0.395) (Table 1). 
Thus, children appear to have a more distributed system that 
is not adapting to the stimulus presentations, but is sensitive 
to object perception. 

However, these main efects should be interpreted with 
caution, given the signifcant interaction between Structure 
and Group associated with the left postcentral gyrus (F(1, 
25) = 11.09, h2 = 0.307) and the right superior frontal gyrus 
(F(1, 25) = 14.52, h2 = 0.368) (pvoxel < 0.01, pcluster < 0.01; 
Fig. 3; Table 1). We performed planned comparisons to 
examine differences in each region between tight and 

variable structures within each age group. Planned compari-
sons revealed that within both regions, children had higher 
activation for variable compared to tight structures (postcen-
tral gyrus: t(12) = 2.33, p = 0.038, d = 0.649, superior fron-
tal gyrus: t(13) = 3.16, p = 0.008, d = 0.844) whereas adults 
demonstrated higher activation for tight structure in the 
superior frontal gyrus (t(13)=2.49, p =0.029, d =0.685) and 
no diference in the postcentral gyrus (p = 0.06, d = 0.562). 
Therefore, children showed less adaptation during view-
ing variably structured categories compared with tightly 
structured categories. In contrast, adults adapted to vari-
able category structure either to the same degree, or more 
than tightly structured categories. The implications here are 
that children formed categories only after exposure to tight 
category structure, whereas adults formed categories from 
either type of exposure or from only variably organized cat-
egory structure. Interestingly these efects were only seen 
in the frontal cortex. 

The impact of category structure on generalization 

We also examined the infuence of development and vari-
ability on the degree to which new exemplars were assimi-
lated into, or diferentiated from, the learned categories. 
Release from adaptation indicated that the new (deviant) 
exemplar did not ft into the category, whereas no release 
(the same or less activation to the new exemplar) indicated 
that it was processed as belonging to the same category. 
Release was calculated as (Deviant Beta—Last 3 s Beta). A 
positive diference suggested that the deviant stimulus was 
diferent from the adapted category, a negative diference 

https://t(13)=2.49
https://25)>16.50
https://25)>14.45
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Fig. 3 Results from a 2 (Structure) by 2 (Age) repeated measures, 
whole-brain ANOVA, p < 0.01, pcor <0.01. Asterisks represent results 
(p< 0.05) of paired-samples t tests comparing betas during the entire 

suggested continued adaptation, indicating that it was pro-
cessed as the same as the adapted category. 

We frst performed a contrast, Deviant>Last 3 s, to deter-
mine whether our deviants caused release at all (could a 
diference be detected) in both adults and children collapsed 
across other factors. In adults, signifcant release was associ-
ated with the right superior temporal gyrus, the left insula 
extending to the middle temporal gyrus, the left middle 
occipital gyrus extending through the right middle occipital 
gyrus, parahippocampal and lingual gyri, and precuneus, the 
right superior parietal lobule, the left inferior frontal gyrus 
extending through the frontal gyri, the right middle frontal 
gyrus, the left and right anterior cingulate, and the cingu-
late gyrus. Therefore, many brain regions played a role in 
detecting a deviant stimulus. Continued adaptation occurred 
in the left and right inferior occipital gyri extending to the 
fusiform gyri, suggesting that these regions assimilated the 
new stimulus into the existing category. In children, release 
occurred within the right inferior and superior frontal gyri. 
In contrast, continued adaptation occurred within the right 
and left middle occipital gyri (Fig. 4; Table 2). Thus, in 
both populations, if we do not account for our manipula-
tions of category structure and deviant type, the occipital 
and VTC regions grouped the deviant stimuli with the cat-
egory. It is of note that when comparing release between the 
two age groups, there were no areas where children showed 

learning block for tight and variable structures within each age group. 
Error bars are standard error of the mean 

greater release than adults. Adults showed greater release 
than children (pvoxel < 0.01, pcluster <0.01), in the left pre-and 
post-central gyri, the left inferior frontal gyrus and the left 
temporal pole. 

We then performed a 2 (Structure: Tight vs. Variable) 
× 2 (Deviant: Invariant vs. Similarity) by 2 (Age: Adults 
vs. Children) mixed model ANOVA. The analysis revealed 
a main efect of group (pvoxel < 0.01, pcluster < 0.01). Adults 
demonstrated signifcantly greater release than children 
associated with the right fusiform gyrus (F(1, 25) = 16.56, 
h2 = 0.398). However, children demonstrated greater 
release than adults throughout the left frontal gyri (F(1, 
25) = 25.41, h2 = 0.504), the right superior frontal gyrus 
(F(1, 25) = 13.65, h2 = 0.353), the left (F(1, 25) = 18.47, 
h2 = 0.425), and right (F(1, 25) = 21.43, h2 = 0.462) superior 
temporal gyri, the left (F(1, 25) = 23.15, h2 = 0.481), and 
right (F(1, 25) = 37.32, h2 = 0.599) insula, the right supe-
rior parietal lobule (F(1, 25) = 20.53, h2 = 0.451) (Table 3). 
There were no main efects of Structure or Deviant at our 
threshold (pvoxel < 0.01, pcluster < 0.01). Therefore adults pro-
cessed the deviant as diferent from the category in the right 
fusiform, whereas children did so in the superior temporal, 
parietal and frontal regions. 

No region demonstrated a signifcant three-way interac-
tion at our threshold, (pvoxel < 0.01, pcluster < 0.01). How-
ever, the component two-way interactions were signifcant 

https://pcor<0.01
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Fig. 4 Results for release from adaptation collapsed across structure in terms of previously formed representations of the object category. 
and deviants conducted using the contrast Deviant > Last 3 s, voxel- Blue regions signify continued adaptation. a Presents adults. b Pre-
wise p < 0.01, cluster corrected pcor <0.01. Red regions signify a sig- sents children 
nifcant release from adaptation, suggesting that the stimulus difered 

Table 2 Release from adaptation 

Group Contrast Cluster Talairach coordinates Peak t Average p value Anatomical location 
size (vox-

Peak x Peak y Peak zels) 

Adult Deviant > last 3 s 25,245 39 − 1 − 11 9.65 0.003 Right superior temporal gyrus 
2348 21 21 − 11 5.00 0.005 Right anterior cingulate 
2875 − 24 26 − 5 4.94 0.005 Left anterior cingulate 
8028 − 36 − 37 10 8.04 0.004 Left insula extending to middle temporal gyrus 
2889 0 11 31 6.70 0.004 Cingulate gyrus 
12,828 9 − 37 34 6.93 0.003 
10,944 35 59 40 7.10 0.004 Right middle frontal gyrus 
20,594 21 − 58 52 6.93 0.003 Right superior parietal lobule 

Last 3 s > deviant 12,747 − 27 − 88 − 17 9.05 0.003 Left inferior occipital gyrus extending to fusiform 
gyrus 

25,017 30 − 88 − 11 13.73 0.002 Right inferior occipital gyrus extending to fusiform 
gyrus 

12,254 − 45 29 10 6.99 0.003 Left inferior frontal gyrus extending through 
frontal gyrus 

47,971 − 6 − 79 10 6.69 0.004 Left middle occipital gyrus extending to right 
middle occipital gyrus, bilateral lingual gyrus, 
bilateral parahippocampal gyrus, and precunes 

Children Deviant > last 3 s 2336 54 32 20 4.13 0.006 Right superior frontal gyrus 
2594 42 8 13 5.46 0.004 Right inferior frontal gyrus 

Last 3 s> deviant 9220 24 − 76 − 26 6.92 0.004 Right middle occipital gyrus 
1915 − 42 − 70 − 8 5.11 0.005 Left middle occipital gyrus 

across several regions. First, the 2 (Structure: Tight vs. h2 = 0.298), the left lingual gyrus (F(1, 25) = 12,78, 
Variable) × 2 (Deviant: Invariant vs. Similarity) interaction h2 = 0.329), the left inferior parietal lobule extending to the 
was associated with both the left anterior (F(1, 25) = 15.42, precuneus (F(1, 25) = 13.07, h2 = 0.344) (Fig. 5; Table 3). 
h2 = 0.372) and posterior fusiform gyrus (F(1, 25) = 11.03, Given that we hypothesized that variability would lead to 

https://pcor<0.01
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   Table 3 Structure by deviant by age mixed ANOVA analysis 

Efect Contrast Cluster Talairach coordinates Peak stat Average p value Anatomical location 
size (vox-

Peak x Peak y Peak zels) 

Main group Adults > children 1552 39 − 49 − 29 4.61 0.005 Right fusiform gyrus 
Children > adults 1490 − 39 − 1 − 19 − 3.88 0.006 Left superior temporal gyrus 

2558 24 8 − 19 − 4.90 0.005 Right superior temporal gyrus 
2074 39 − 19 4 − 4.29 0.005 Right insula 
1447 − 40 − 24 19 − 3.98 0.005 Left insula 

10281 − 45 32 28 − 4.87 0.004 Left middle frontal gyrus 
extending throughout 
frontal gyri 

1501 30 − 1 61 − 4.05 0.005 Right superior frontal gyrus 
2655 27 − 40 61 − 4.66 0.005 Right superior parietal lobule 

Structure × deviant – 366 − 24 − 70 − 14 11.18 0.008 Left fusiform gyrus 
1017 − 42 − 34 − 17 12.44 0.007 
1026 − 18 − 79 − 8 15.16 0.006 Left lingual gyrus 
2422 − 36 − 40 25 18.89 0.006 Left inferior parietal lobule 

extending to precuneus 
Structure × group – 1194 36 − 25 − 23 15.89 0.006 Right fusiform gyrus 

712 − 33 − 22 − 17 15.08 0.007 Left parahippocampal gyrus 
1882 54 26 16 18.41 0.005 Right middle frontal gyrus 
650 48 − 13 31 13.39 0.006 Right precentral gyrus 

2045 − 51 − 31 31 14.39 0.005 Left superior parietal lobule 
Deviant × group – 1992 − 14 − 64 28 29.12 0.004 Left cingulate gyrus 

1223 12 − 55 13 19.81 0.005 Right cingulate gyrus 

invariant-feature defned categories, we then performed a 
priori paired t tests comparing release for similarity and 
invariant deviants within each level of structure. For tight 
structure, release was greater for similarity over invariant-
feature deviants in all signifcant regions, (L. anterior fusi-
form: t(26)= 2.39, p=0.024, d= 0.47, L. posterior fusiform: 
t(26) = 2.50, p = 0.019, d = 0.48, L. lingual: t(26) = 2.96, 
p=0.007, d=0.57, L. parietal lobule: t(26)=2.46, p=0.021, 
d = 0.47). For variable exposure, all regions demonstrated 
signifcantly greater release for invariant-feature deviants, 
(L. anterior fusiform: t(26) = 2.64, p = 0.014, d = 0.51, L. 
posterior fusiform: t(26) = 2.17, p = 0.039, d = 0.44, L. lin-
gual: t(26) = 2.38, p = 0.025, d = 0.46, L. parietal lobule: 
t(26) = 2.74, p = 0.011, d = 0.52). These fndings suggested 
that detection of a change in the invariant feature resulted 
from variable exposure and was processed by ventral tem-
poral and parietal sub regions. 

We then examined the additional 2 (Structure: Tight 
vs. Variable) × 2 (Age: Adults vs. Children) interaction 
(pvoxel < 0.01, pcluster < 0.01). The anterior right fusiform 
gyrus (F(1, 25) = 15.75, h2 = 0.387), left parahippocampal 
gyrus (F(1, 25) = 20.57, h2 = 0.451), left superior parietal 
lobule (F(1, 25) = 13.42, h2 = 0.341), right middle frontal 
gyrus (F(1, 25) =19.11, h2 = 0.433), and the right precentral 
gyrus were signifcant (F(1, 25) = 12.70, h2 = 0.337) (Fig. 6; 

Table 3). We then performed planned comparisons to exam-
ine the patterns of generalization for diferent structures 
within and across age groups. Planned comparisons revealed 
that children demonstrated signifcantly greater release after 
variable compared to tight exposure in all regions, (right 
fusiform gyrus: t(12) = 3.13, p = 0.009, d = 0.875, left para-
hippocampal gyrus, t(13) = 4.37, p = 0.001, d = 1.21, left 
superior parietal t(12) = 3.32, p = 0.006, d = 0.931, right 
middle frontal gyrus t(12) = 3.51, p = 0.004, d = 0.981, 
right precentral gyrus t(12) = 3.04, p = 0.01, d = 0.842). 
Adults demonstrated signifcantly greater release for tight 
exposure in the right fusiform gyrus (t(13)=3.16, p= 0.008, 
d = 0.884) and the right middle frontal gyrus (t(13) = 2.65, 
p=0.02, d=0.712), but no diferences in the parahippocam-
pal gyrus, the left superior lobule, and the right precentral 
gyrus (ps > 0.10, ds < 0.50). Independent-samples t tests 
revealed that within the right fusiform gyrus (t(25) = 3.64, 
p = 0.001, d = 1.46), and the right middle frontal gyrus 
(t(25) = 2.90, p = 0.008, d = 1.40) children demonstrated 
significantly greater release than adults after variable 
exposure, whereas adults demonstrated greater release 
after tight exposure, (right fusiform gyrus: t(25) = 2.18, 
p=0.039, d=0.868, right middle frontal gyrus: t(25)=2.97, 
p = 0.007, d = 1.06). Within the left parahippocampal gyrus 
(t(25) = 3.35, p = 0.003, d = 1.34), the left superior parietal 

https://t(25)=2.97
https://t(13)=3.16
https://t(26)=2.46
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Fig. 5 Results from a 2 (Struc-
ture) by 2 (Deviant) interaction 
using release as the depend-
ent measure, p < 0.01, cluster 
corrected pcor < 0.01. Y-axis 
provides Beta Release calcu-
lated by (Beta Deviant − Beta 
Last 3 s). Positive values signify 
release while negative and zero 
values signify maintenance. 
Asterisks represent results 
(p < 0.05) of paired-samples 
t tests comparing release for 
deviants within tight and vari-
able structures. Error bars are 
standard error of the mean 

lobule (t(25) = 3.64, p = 0.001, d = 1.45), and the right pre-
central gyrus (t(25) = 3.48, p = 0.002, d = 1.39), adults still 
demonstrated greater release than children after tight expo-
sure. However, there were no diferences after variable expo-
sure (ps > 0.095, ds < 0.685). These fndings suggest that 
neural systems may be tuned to diferent category structures 
at diferent points in development. 

Finally, we examined the signifcant 2 (Deviant: Invariant 
vs. Similarity) × 2 (Age: Adults vs. Children) interaction 
(pvoxel < 0.01, pcluster < 0.01). This interaction was associated 
the with left (F(1, 25) = 19.29, h2 = 0.436) and right cingu-
late gyrus (F(1, 25) = 25.08, h2 = 0.520) (Fig. 7; Table 3). 
In both regions, children demonstrated greater release for 

invariant deviants (left: t(12) = 4.42, p = 0.001, d = 1.24, 
right: t(13) =6.55, p < 0.001, d =1.82). Adults demonstrated 
no diferences between deviant types (ps > 0.390, ds < 0.25). 
We then performed planned comparisons examining devel-
opmental diferences in processing deviant types via inde-
pendent samples t tests. Within the right cingulate gyrus, 
there were no diferences between adults and children across 
either deviant type (ps > 0.065, ds < 0.75). Within the left 
cingulate gyrus, children demonstrated greater release than 
adults for invariant-feature deviants (t(25) = 2.80, p = 0.01, 
d =1.11) and no diferences for similarity deviants (p =0.15, 
d = 0.59). These results suggest diferences in how category 
exceptions are processed across development. 
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  Fig. 6 Results from a 2 (Structure) by 2 (Age) interaction using
release as the dependent measure, p < 0.01, cluster corrected 
pcor <0.01. Y-axis provides Beta Release calculated by (Beta Deviant 
− Beta Last 3  s). Positive values signify release while negative and 

Discussion 

Our results suggest that there are diferences in the systems 
recruited by children and adults in learning categories as 
well as how they categorize new exemplars after implicit 
exposure to category members. Our findings produce 
three broad contributions: (1) The brain (and specifcally 
the VTC) is sensitive to category structure (2) Generaliza-
tion (measured by release) is dependent on the individual’s 
experience with the underlying category structure and (3) 
Children and adults recruit diferent systems to process vari-
ability and generalize category membership. 

In general, our results suggested that exposure to variable 
category structure recruits the right fusiform gyrus to a larger 
extent than tight structure. In examining generalization, 

zero values signify maintenance. Asterisks represent results (p < 0.05) 
of paired-samples t tests comparing release for deviants within tight 
and variable structures. Error bars are standard error of the mean 

variability among category members evokes greater general-
ization in children whereas adults demonstrated more equiv-
alent release from category structures. Furthermore, children 
demonstrated more widespread release patterns compared 
to adults who only demonstrated greater release than chil-
dren in one region—the right fusiform gyrus. This fnding 
support the theory of interactive specialization (Johnson 
2001) that asserts that during development, the acquisition 
of new behavioral competencies will result in a widespread 
recruitment of brain networks compared to adults that rely 
on a smaller number of interconnected regions for the same 
skill. Given the implicit nature of the exposure to category 
and that the actual task (center/of center detection) did not 
require working memory and had low attentional demands, 
we interpret this greater network of activation in children 
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Fig. 7 Results from a 2 (Devi-
ant) by 2 (Age) interaction 
using release as the dependent 
measure, p <0.01, cluster cor-
rected p< 0.01. Y-axis provides 
Beta Release calculated by 
(Beta Deviant − Beta Last 3 s). 
Positive values signify release 
while negative and zero values 
signify maintenance. Asterisks 
represent results (p < 0.05) of 
paired-samples t tests compar-
ing release for deviants within 
invariant and similarity devi-
ants. Error bars are standard 
error of the mean 

as refecting a diference in how the brain is processing the 
category members and deviant stimuli. Behavioral work has 
found that children 7–8 years of age are transitioning from 
forming categories based on similarity among members to 
forming categories based more on diagnostic features. The 
interactive specialization account would therefore predict 
that children of this age would recruit a more extensive net-
work of neural regions when learning categories than would 
adults. 

Behaviorally, we know that during this same type of 
exposure and task, children are able to subsequently group 
the category members together but do so in a way that is 
diferent from adults (Plebanek and James, under review). 
Therefore, the diference in extent of neural activation is 
interpreted as refecting the tendency for the developing 
brain to recruit extensive networks while acquiring a new 
skill that only reduce to a more specialized system once the 
skill is fully acquired (e.g., Johnson 2001). 

Category structure and learning 

In the present paradigm, we measure neural activation dur-
ing a block of stimulus presentations that are either tightly 
organized or variably organized. We interpret neural acti-
vation through degree of adaptation during this block 
as a reflection of implicit learning. Adaptation during 
implicit exposure to our stimuli indicates that each stimu-
lus is processed as similar to the other stimuli in the block 

(suppression of neural signal through stimulus repetition). 
In the following, we split our interpretations of the results 
into the primary brain region of focus, the VTC, and other 
regions that we consider to be more exploratory in nature. 

Adaptation in the ventral temporal cortex (VTC) 

Our results demonstrate that across repetitions of exemplars, 
the right fusiform gyrus was more active while process-
ing variable as opposed to tight categories. In the current 
paradigm, this implies that exposure to variability among 
category members results in the right fusiform processing 
each stimulus as diferent, not combining them into a single 
category. The engagement of the VTC in object perception 
is very well-documented. Interpretations form results of 
prior work ranges from accounts supporting specialization 
for discrete categories of objects to generalized processing 
mechanisms leading to greater regional activation (Kan-
wisher et al. 1997; Gauthier et al. 1999). Recent work has 
proposed an additional role of the VTC in responding to 
how stimuli are presented (the structure of the presentation). 
Turk-Browne et al. (2009) presented participants with blocks 
of either predictive symbol triplets or randomly organized 
symbols. Participants demonstrated little explicit awareness 
for this presentation structure, but there was signifcant neu-
ral activity associated with ventral temporal brain regions 
for predictive compared to random blocks. Similarly, work 
on letter perception have suggested that the VTC may play 
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a role in how individuals process variability in visual cues 
that are associated with letter production (Vinci-Booher 
et al. 2020). Although these studies are helpful in build-
ing a neural profle of variability, they were not designed 
to test efects of variability on learning. By directly testing 
category member variability in the present work, we found 
that variability leads to individuation of category members 
in the right VTC rather than perceiving all stimuli as similar, 
forming a category. 

Furthermore, we found that this individuation of stimuli 
was more pronounced in adults compared with children 
in the right fusiform gyrus, indicated by higher activation 
in this region during adaptation in adults compared with 
children. Therefore, children are not processing individual 
stimuli as diferent to the same degree as adults. This devel-
opmental diference in object processing in the VTC is a 
novel fnding. Previous work comparing children to adults 
has demonstrated that degree of activation to objects in the 
VTC is similar in adults and children, even though the extent 
of activation is greater in children (e.g., Golarai et al. 2007; 
Dekker et al. 2011; Passarotti et al. 2003; Nishimura et al. 
2009). However, much of this previous body of research has 
used familiar object stimuli that are highly distinguishable 
and belong to diferent categories (e.g., chairs, tools, fruits 
etc.). Our fndings suggest that individuation of within-cat-
egory exemplars by the VTC is still immature around eight 
years of age. This novel fnding supports neuroimaging work 
that fnds that individuation of members of the category of 
faces displays a protracted development relative to between-
category object processing (e.g., Haist et al. 2013; Joseph 
et al. 2015; Scherf et al. 2014). 

Adaptation in other brain regions 

The interaction between age and category structure during 
the implicit exposure phase of this experiment revealed that 
there were two other regions that were sensitive to category 
structure and difered between the two ages: the left post-
central gyrus (somatosensory cortex/anterior intraparietal 
sulcus) and the right superior frontal gyrus. Specifcally, 
we found that children perceived the category members as 
distinct with variable exposure in both regions (they showed 
less adaptation), whereas adults did not. This fnding implies 
that children processed exemplars with high variability as 
diferent from one another in these regions. Interestingly, 
these two regions have been implicated in controlling vol-
untary saccadic eye movements (e.g., Connolly et al. 2002; 
Vernet et al. 2014). We, therefore, interpret our fnding as 
refecting task efects (recall the task was deciding whether 
a stimulus was central or peripheral in the display) that were 
more apparent in children than adults. Saccadic eye-move-
ments are diferent in children compared with adults (Yang 

et al. 2002) but why they would occur more with variable 
exposure than tight exposure in children remains elusive. 

Category structure and generalization of novel 
stimuli 

A long-posited advantage of variability is the potential to 
highlight invariant features among category members (Smith 
1989). Thus, variability may be useful in overcoming com-
peting category representations to create invariant-feature 
based (as opposed to similarity-based) categories (Deng 
and Sloutsky 2016). That is, variability may distill category 
membership down to diagnostic features of members. Neu-
ral adaptation methods allow the researcher to determine 
category boundaries, that is, whether a novel stimulus that 
is presented after adaptation will be processed as being in 
the same category (continued adaptation) or in a diferent 
category (release from adaptation). We hypothesized that 
exposure to a variably structured category would facilitate 
the extraction of the critical, invariant feature that defned 
the category. If this were the case, then participants would 
demonstrate a release from adaptation when the novel stimu-
lus contained a diferent critical feature from the learned 
category. Therefore, we would observe greater release to 
the invariant-feature deviant compared with the similarity 
based deviant. This result would be revealed by the Structure 
× Deviant interaction. 

In the left VTC, we found overall greater release from 
adaptation for invariant-feature based deviants than for 
similarity-based deviants after variable exposure to cat-
egory members. Past research has demonstrated that dur-
ing explicit category learning with feedback, the anterior 
fusiform gyrus and the extrastriate cortex became sensitive 
to small perceptual changes that crossed category bounda-
ries (Folstein et al. 2012). Our results purport variability 
as another mechanism akin to explicit category training or 
feedback to engage the VTC in learning category bounda-
ries. Thus, variability may help assimilate members within 
a category and extract a category’s invariant features. 

Neural diferences based on category structure were found 
during the adaptation portion of the experiment in the right 
VTC. As reviewed above, we found that the R. VTC in both 
children and adults did not display adaptation after variable 
exposure compared with tight exposure. We suggested that 
the right VTC, therefore, individuates category members 
after variable exposure instead of grouping them together 
into a category. In our analyses of the release from adapta-
tion, we found that it was the left VTC that was sensitive to 
invariant-feature deviants after variable exposure. Therefore, 
both left and right VTC were sensitive to category learning 
but in diferent ways. Although we cannot interpret a lack of 
diference, this potential hemispheric diference may be an 
important avenue to explore in future work. For instance, it 
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could be that the left VTC did not reveal a diferent degree 
of adaptation reliant on category structure simply because 
it adapted to both types of exposure. It did however, show a 
release from adaptation after variable exposure when devi-
ants were invariant, suggesting an important role of the left 
VTC in using variability to construct categories based on 
invariant features. 

Furthermore, there was also greater release after variable 
exposure to categories when viewing an invariant-feature 
based deviant in the parietal cortex (inferior parietal lobule). 
We are unable to discern from this study if this activation 
is due to greater attentional demands required when view-
ing invariant-based vs similarity-based deviants that may 
recruit parietal regions (Sloutsky 2010). However, given the 
implicit nature of exposure to categories, we assume that 
attentional demands should not play a role. 

Last, we identifed developmental diferences in deviant 
processing due to specifc category structures. Although 
there was not a 3-way interaction among our variables, there 
was a developmental diference in release from adaptation 
as a function of category structure. In the right VTC (spe-
cifcally the right fusiform gyrus), children demonstrated 
greater release from adaptation after exposure to variable 
members of a category, whereas adults demonstrated greater 
release after exposure to tight structure in this same region. 
This fnding suggests that in children, variability among cat-
egory members enhances the ability to discriminate previ-
ously seen stimuli from a stimulus that deviates from prior 
exposure. In contrast, adults only detect deviants after expo-
sure to tightly organized categories. 

In children, these results support the idea that the right 
fusiform gyrus plays a crucial role in category formation 
(Tarr and Gauthier 2000; see Grill-Spector et al. (2004) 
for contrasting views), but extends past fndings by show-
ing that this formation is sensitive to category structure. 
Specifcally, the immature fusiform responds to variability 
among exemplars to form a category. These results support 
the history of work suggesting that variability aids learn-
ing from infancy throughout childhood, and that sensitiv-
ity to variability may be impacted by development (Li and 
James 2016; Perry et al. 2010; Twomey et al. 2014; Perone 
et al. 2015, 2019). In adults, the lack of greater release for 
variable categories is somewhat surprising. Even adults have 
shown increased category subdivision, generalization, and 
recognition due to variability in the behavioral literature 
(Eidsvag et al. 2015; Harman and Humphrey 1999; Cohen 
et al. 2001). However, neuroimaging work has suggested that 
the VTC of young children is more sensitive to variability 
than the adult VTC (Vinci-Booher et al. 2020). In that work, 
children aged 5–7 showed VTC sensitivity to variability in 
symbols, whereas older children (mean aged 9) and adults 
did not (Vinci-Booher et al. 2020). One possible explana-
tion for the diference in the behavioral work in adults and 

activation of the VTC is that variability among exemplars 
is processed in a region other than the VTC in older chil-
dren and adults. Although we did not fnd any region that 
released more after variable exposure in the adults, we did 
fnd regions that released equally after variable and tight 
exposure (parahippocampal gyrus, the left superior lobule, 
and the right precentral gyrus). This result can be interpreted 
as suggesting that the adult brain groups stimuli together 
after both tight and variable exposure. 

Conclusions 

Many fndings have demonstrated that increasing the vari-
ability among category members facilitates learning, reten-
tion, or transfer despite adding seemingly extraneous infor-
mation to the learning context. Here, we have demonstrated 
how the internal structure of object-categories is purposeful 
in guiding the learner to form specifc representations with-
out explicit training. Furthermore, we provided evidence that 
the formation of these representations recruits regions of the 
VTC diferently across development. These fndings may 
have signifcant implications in category formation as well 
as generalization. 

Appendix 1 

The metric changes were as follows: Within the alien simi-
larity space, the metric changes were as follows: the eyestalk 
changed 0.08 inches per step, the surface area changed by 
adjusting the width of the body approximately 0.08 inches 
and the height approximately 0.07 inches, the arms changed 
5° per step. Within the fower similarity space, the stems 
changed the zigzag function in adobe illustrator 5%, the pet-
als were rounded 5°, the gradient of the center changed 5%. 
The metric nature of our categories resulted in numerical 
diferences in our exposure types. The tight variability con-
sisted of a similarity space that could only vary a maximum 
of one value per each of the three dimensions in the simi-
larity space. Thus, potential values included only values 8 
through 10 on each of the 3 dimensions. The tight exposure 
included a distribution of stimuli that varied from the cen-
tral stimulus (stimulus 9-9-9) an average of 2.05 steps, with 
the average of each dimension in the similarity space being 
(9.01, 8.89, 9.06). For the variable space, the similarity 
space could vary a maximum of fve values per each of the 
three dimensions in the similarity space. Therefore, potential 
values included 4–14 on each dimension. This distribution 
varied from the central stimulus an average of 8.25 steps, 
and the average of the stimulus space was (8.17, 8.52, 8.96). 
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